

Welcome to Avrae’s documentation!

Cheatsheets:

	Getting Started
	Step 1: Invite Avrae to Your Server

	Step 2: Add a Character

	Step 3: Ready to Roll

	Next Steps

	DM Combat Guide
	Starting Combat

	Running Combat

	Helper Commands

	Removing from Combat

	Ending Combat

	Player Combat Guide
	Joining Combat

	Your Turn

	Helper Commands

	Inline Rolling
	Enabling Inline Rolling

	Arguments

	Comments

	Character Rolls

	Examples

	Additional Automation Support
	Specifying Class Feature DC Bonuses

	Spells with Additional Support

Contents:

	D&D Beyond Content Integration
	How do I link my D&D Beyond and Discord accounts?

	Content Access

	Private Character Import

	Dice Sync

	Where can I go if I have issues or Questions?

	Aliasing Basics
	Command Types

	Command Levels

	Help

	Aliasing Tutorials
	Half-Orc Relentless Endurance Tutorial

	Insult Tutorial

	Aliasing API
	Draconic

	Syntax
	Rolls

	Values

	Draconic Expressions

	Draconic Blocks

	Argument Parsing

	Cvar Table

	Function Reference
	Python Builtins

	Draconic Functions

	Variable Scopes
	Character Variables

	User Variables

	Server Variables

	Global Variables

	Honorable Mention: Initiative Metadata

	Using Imports
	Writing Modules

	Catching Exceptions

	See Also

	Initiative Models
	SimpleCombat

	SimpleCombatant

	SimpleGroup

	SimpleEffect

	Initiative Effect Args

	SimpleRollResult
	SimpleRollResult

	ParsedArguments
	ParsedArguments

	Context Models
	AliasContext

	AliasGuild

	AliasChannel

	AliasCategory

	AliasAuthor

	AliasCharacter
	AliasCharacter

	AliasCustomCounter

	AliasDeathSaves

	AliasAction

	AliasCoinpurse

	StatBlock Models
	AliasStatBlock

	AliasBaseStats

	AliasLevels

	AliasAttackList

	AliasAttack

	AliasSkill

	AliasSkills

	AliasSaves

	AliasResistances

	Resistance

	AliasSpellbook

	Automation Reference
	Basic Structure
	automation

	effect

	node

	Runtime Variables

	Target
	Target

	Attack
	hit

	miss

	attackBonus

	adv

	Save
	Save

	Damage
	Damage

	TempHP
	TempHP

	IEffect
	IEffect

	PassiveEffects

	AttackInteraction

	ButtonInteraction

	Remove IEffect
	RemoveIEffect

	Roll
	Roll

	Text
	Text

	Set Variable
	SetVariable

	Condition (Branch)
	Condition

	Use Counter
	UseCounter

	SpellSlotReference

	AbilityReference

	Cast Spell
	CastSpell

	Ability Check
	Check

	AnnotatedString

	IntExpression

	Examples
	Attack

	Save

	Attack & Save

	Draining Attack

	Target Health-Based

	Area Vampiric Drain

	Damage Over Time Effect

	Custom Attack Structure
	AttackModel

	Specifying Class Feature DC Bonuses

Indices and tables

	Index

	Module Index

	Search Page

Getting Started

Avrae is a powerful bot, but it can be pretty daunting to get everything set up! Here’s
three quick steps to getting a character sheet linked with Avrae, and ready to play in a game!

Step 1: Invite Avrae to Your Server

The first step is to add Avrae to your server. Make sure you have the Manage Server permission, and head over to
invite.avrae.io [https://invite.avrae.io/].

Optional: Setting a Prefix

After you add Avrae, you might want to change the prefix in case other bots use the same prefix:

!prefix <prefix> - Insert any prefix you want to use based on your server (ex. !, #, $, !!, etc.)

Using Help

With the built in !help command, you get information about other commands in the bot. Here is the syntax for using help:

!help <command>

For example, !help attack will bring up the help dialog for the !attack command. Try it out for yourself!

!help

Help will give you examples of commands you can use and information about them.

Step 2: Add a Character

Once you have your stats, think of what character you want to play and make them a sheet on
D&D Beyond [https://www.dndbeyond.com/], Dicecloud v1 [https://v1.dicecloud.com/],
Dicecloud v2 [https://dicecloud.com/], or Google Sheets [https://gsheet2.avrae.io/]!

Once you’re done making your character, make sure it’s publicly viewable (Avrae needs to be able to see your sheet),
grab the sharing URL, and follow the steps below depending on what sheet system you chose to use.
You should see your character’s stats pop up in Discord!

D&D Beyond

To add a character from D&D Beyond, use the following command:

!import https://ddb.ac/characters/...

Note

If you link your D&D Beyond and Discord accounts and your DM links your campaign to a channel, your character’s
rolls made on D&D Beyond or the Player App will appear in Discord!

Dicecloud v1

To add a character from Dicecloud, use the following command:

!import https://v1.dicecloud.com/character/...

Note

Avrae can update your HP and consumables live on Dicecloud - share the sheet with edit permissions with avrae.

Dicecloud v2

To add a character from Dicecloud V2, use the following command:

!import https://dicecloud.com/character/...

Google Sheets

To add a character from GSheet, use the following command:

!import https://docs.google.com/spreadsheets/d/...

Note

You will need to share your sheet with avrae-320@avrae-bot.iam.gserviceaccount.com.

Step 3: Ready to Roll

You’re ready to roll now! You can use the !check command to roll skill checks, !save for saving throws,
and !attack to attack with your weapons!

	For example:
	
	!check arcana - rolls an Intelligence (Arcana) check

	!save dexterity - rolls a Dexterity Save

	!attack longsword - rolls an attack with a longsword

Next Steps

For more detailed documentation on how each command works, you can use !help <command> to view a list of supported
arguments, or come join us at the Avrae Development Discord [https://support.avrae.io]!

DM Combat Guide

Note

arguments surrounded like <this> are required, and arguments in [brackets] are optional. Put quotes around arguments that contain spaces.

Note

This guide will move roughly in chronological order, meaning commands near the top should be run first.

Starting Combat

First, combat must be started in a channel. All commands should be posted in the same Discord channel that combat was started in. Combat can be started by using the following command.

!i begin

Avrae will output the summary message and pin it, then a quick reminder on how to add yourself to combat (for a player).

Adding Monsters

After combat is started, you will need to add monsters and combatants. You can add official monsters with this command.

!i madd <monster name> [arguments]

	Common arguments include:
	
	-n <number of monsters> (ex. -n 5 adds 5 creatures)

	-name <monster name scheme> (ex. -name "Orc#" -n 2 adds Orc1 and Orc2)

	-group <group name> (makes all creatures in the group act on the same initiative)

	-rollhp (rolls for a creature’s HP)

	-hp <hp> (overrides a creature’s initial HP)

	-ac <ac> (overrides a creature’s initial AC)

Remember to surround any arguments with spaces in them with quotes!

Adding Other Combatants

If you’re adding a combatant without a sheet, you can add a generic combatant with:

!i add <initiative modifier> <name> [arguments]

	Examples of combatants that might need to be added like this are:
	
	an object

	a lair action

	a homebrew monster that hasn’t been imported using the Bestiary system

Hiding Stats

As a DM, you probably want to hide certain stats from your players. By default, any monsters added with !i madd
will have their stats hidden, but you must hide generic combatants’ stats yourself:

!i add <initiative modifier> <name> -h

This will hide HP and AC.

Examples

!i madd "young red dragon"
adds a Young Red Dragon to combat with stats hidden

!i madd kobold -n 5 -group Kobolds -rollhp
adds 5 Kobolds, named KO1-KO5, with rolled HP, to a group named Kobolds

!i add 20 "Lair Action" -p
adds a Lair Action on initiative 20

!i add 0 Longboat -ac 15 -hp 300
adds an object with 300 HP, an AC of 15, and +0 initiative

Running Combat

Once you have finished setting up combat and your players have joined, this command will go to the next turn in the order and combat will begin.

!i next

On a player’s turn, it’s up to the player to run commands to take their actions. See the Player Combat Guide.

When a monster’s turn comes up, the most common actions to take are attacking or casting a spell.

Attacking

To attack another combatant, use this command:

!i attack <attack name> -t <target name> [arguments]

This uses the attack list of whatever combatant’s turn it is. To see a list of available attacks, run !i attack list.

As many targets as necessary may be provided by adding more -t <target name>, in the case of attacks that target multiple creatures
(such as a breath weapon).

Note

If a monster makes an Attack of Opportunity, the syntax is !i aoo <combatant name> <attack name> -t <target name> [arguments].

Alternatively, you may use !ma <monster name> <attack name> -t <target name> [arguments].

To see all valid arguments, refer to the !attack and !ma documentation.

Casting a Spell

To cast a spell, use this command:

!i cast <spell name> [-t <target name>] [arguments]

This uses the spell list of whatever combatant’s turn it is.

As many targets as necessary may be provided by adding more -t <target name>, in the case of spells that target multiple creatures
(such as Fireball).

Note

If a monster casts as a reaction, the syntax is !i rc <combatant name> <spell name> [-t <target name>] [arguments].

Alternatively, you may use !mcast <monster name> <spell name> [-t <target name>] [arguments], although this will
not track the spell slots for the monster in initiative.

To see all valid arguments, refer to the !cast and !mcast documentation.

Examples

!i attack dagger -t Caitlyn -rr 2
attacks a player named Caitlyn with a dagger twice

!i attack longbow -t Em adv
attacks a player named Em with a longbow at advantage

!i attack "fire breath" -t Ara -t Padellis
makes Ara and Padellis make saves against a breath weapon

!i cast bless -t KO1 -t KO2
casts Bless on two kobolds, and attaches an effect to automatically add 1d4

!i cast "fire bolt" -t Qal
casts Fire Bolt at Qal

Ending A Turn

When you’re done with a turn, use this command to move to the next combatant:

!i next

Helper Commands

These commands should help manually change the state of combat.

HP

To modify a combatant’s HP:

!i hp <combatant name> <value>

To set a combatant’s HP:

!i hp <combatant name> set <value>

To set a combatant’s maximum HP:

!i hp <combatant name> max <value>

Examples

!i hp ko1 -5
deals 5 damage to KO1

!i hp Licia set 100
sets Licia's HP to 100

!i hp Taren max 44
sets Taren's max HP to 44

!i hp yo1 +1d4+1
heals YO1 for 1d4+1 HP

Attributes

To modify an attribute of a combatant:

!i opt <combatant name> <arguments>

	Most common arguments:
	
	-ac <AC> (sets AC to new value)

	-resist/immune/vuln <damage type> (gives resistance, immunity, or vulnerability or specified type)

	-h (toggles whether combatants AC and HP are hidden.)

Effects

Effects can be used to track status effects that last a certain duration and modify a combatant’s attacks, resistances,
AC, or other attributes. For a full list of attributes, see !help i effect.

Some attacks and spells, such as Bless, will automatically add appropriate effects to their targets.

To add effects to combatants:

!i effect <target name> <effect name> [arguments]

	Most common arguments:
	
	-dur <duration> (sets the duration of the effect, in rounds)

	-b <bonus> (adds a bonus to all of the target’s attack to-hits)

	-d <damage> (adds bonus damage to all of the target’s attacks)

	-resist/immune/vuln <type> (sets resistance to a damage type)

To remove Effects from combatants:

!i re <combatant name> [effect name]

Examples

!i effect Jozu Rage -dur 10 -d 2
adds a Rage effect to Jozu that adds 2 damage to their attacks and lasts 10 rounds

!i effect Flore Bless -dur 10 -b 1d4 -sb 1d4
adds a Bless effect to Flore that adds 1d4 to their attacks and saves, that lasts 10 rounds

!i effect Padellis "Mage Armor" -ac +3
adds a Mage Armor effect to Padellis that adds 3 to their AC

!i effect Greg "Fire Shield" -resist fire -dur 1
adds an effect to Greg that makes him resist fire until next round

Removing from Combat

To remove someone from combat:

!i remove <combatant name>

Ending Combat

To end combat (Avrae will ask if you wish to end combat, reply “yes”):

!i end

After combat ends, Avrae will send the person who ended it a summary of the combat.

Player Combat Guide

This guide will help players join combat and use actions on their turns.

Note

Arguments surrounded like <this> are required, and arguments in [brackets] are optional.
Put quotes around arguments that contain spaces.

Note

This guide will move roughly in chronological order, meaning commands near the top should be run first.

Joining Combat

To join combat, your DM must first start it. Once they have, proceed below to the following commands:

!i join [arguments]

This will add your active character to combat.

	Common arguments:
	
	-h (hides AC/HP)

	adv/dis (gives advantage/disadvantage on initiative roll)

	-p <#> (places at prerolled init)

You are all setup and ready to go for when your turn comes!

Your Turn

It’s your turn! On your turn, the most common actions are either attacking or casting a spell:

Attacking

To attack, just use the same command you would use out of combat:

!attack <attack name> -t <target name> [arguments]

To see a list of your character’s attacks, use !attack list.

As many targets as necessary may be provided by adding more -t <target name>, in the case of attacks that target multiple creatures
(such as a breath weapon).

Note

This command will work even when it is not your turn in combat.

If you control a summoned creature, refer to the DM Combat Guide.

To see all valid arguments, refer to the !attack documentation.

Casting a Spell

To cast a spell, it’s also the same command in and out of combat:

!cast <spell name> -t <target name> [arguments]

To see a list of your spells, use !spellbook.

As many targets as necessary may be provided by adding more -t <target name>, in the case of spells that target multiple creatures
(such as Fireball).

Note

This command will work even when it is not your turn in combat.

If you control a familiar or summoned creature, refer to the DM Combat Guide.

To see all valid arguments, refer to the !cast documentation.

Examples

!attack dagger -t KO1 -rr 2
attacks KO1 with a dagger twice

!attack longbow -t WY1 adv
attacks WY1 with a longbow at advantage

!attack "fire breath" -t BA1 -t BA2
makes BA1 and BA2 make saves against a breath weapon

!cast bless -t Rook -t Edmund -l 3
casts Bless at 3rd level on Rook and Edmund, and attaches an effect to automatically add 1d4

!cast "fire bolt" -t BA3
casts Fire Bolt at BA3

Ending Your Turn

When you’re done with your turn, use this command to move to the next combatant:

!i next

Helper Commands

These commands should help manually change the state of combat. For more reference, see the DM Combat Guide.

HP

To modify your character’s HP:

!g hp <value>

To set your character’s HP:

!g hp set <value>

To add temporary HP:

!g thp <value>

To set your character’s maximum HP (note the different base command):

!i hp <character name> max <value>

Examples

!g hp -5
deals 5 damage

!g hp set 100
sets the character's HP to 100

!g thp 11
gives the character 11 temp HP

!g hp +2d4+2
heals for 2d4+2 HP

Inline Rolling

Whenever you send a message with some dice in between double brackets (e.g. [[1d20]]),
Avrae will reply to it with a roll for each one. You can send messages with multiple, too, for example:

I attack the goblin with my shortsword [[1d20 + 6]] for a total of [[1d6 + 3]] piercing damage.

Enabling Inline Rolling

By default, inline rolling is disabled when Avrae first joins a server. To enable Inline Rolling, a server admin
(i.e. any member with the Manage Server permission) can enable it using the !servsettings command.

Select Inline Rolling Settings in the menu, and select whether to use reaction-based rolling or always-on rolling.

[image: ../_images/inline_rolling_menu.png]

Always-On Rolling

When Avrae detects an inline roll in a message, she will immediately reply with the roll results for each roll in
the message.

Reaction-Based Rolling

When Avrae detects an inline roll in a message, she will react to the message with the 🎲 emoji. The message author
can then react to have Avrae reply with the roll results for each roll in the message. Other users’ reactions and
any of the author’s reactions beyond the first will be ignored.

Arguments

Inline Rolling supports the adv and dis arguments in the same manner as the !r command.

Comments

Inline Rolling supports comments similar to the !r command.

If a comment is supplied, the output will display the comment instead of the message context surrounding the roll.

[image: ../_images/inline_rolling_comments.png]

Character Rolls

If an inline roll starts with c: or s:, the roll will use your active character’s check or save dice for the
given skill, respectively. This roll type can be combined with other dice bonuses or the advantage arguments.

[image: ../_images/inline_rolling_character.png]

Examples

	Message

	Description

	[[1d20]]

	Rolls 1d20.

	[[1d20+5 adv]]

	Rolls a d20 at advantage with a +5 bonus.

	
[[4d6kh3 STR]]

[[4d6kh3 DEX]]

[[4d6kh3 CON]]

[[4d6kh3 INT]]

[[4d6kh3 WIS]]

[[4d6kh3 CHA]]

	Rolls 6 sets of 4d6, keeping the highest 3 die of each set.

	[[c:arc]]

	Rolls an arcana check for the current active character.

	[[s:dex]]

	Rolls a dexterity save for the current active character.

	[[c:pers adv]]

	Rolls a persuasion check at advantage.

	[[s:con-2]]

	Rolls a constitution save with a -2 penalty.

	[[s:str+1d4 adv]]

	Rolls a strength save with a +1d4 bonus at advantage.

Additional Automation Support

There are many spells and actions that have additional functionality that is not explained or detailed in the relevant lookup or !help. This page is meant to document those quirks and how to use them.

Specifying Class Feature DC Bonuses

You can grant bonuses to your class Saving Throw DCs by creating a cvar: XDCBonus (WarlockDCBonus, BloodHunterDCBonus, MonkDCBonus, etc).

This is to account for items such as the Dragonhide Belt, which adds a flat +1/2/3 bonus to the save DC for your class.

Note

XDCBonus is not generated by the the sheet itself, but is instead set by the user. It will grant the given bonus to the save DC of actions for that class.
You can set it with !cvar XDCBonus #, such as !cvar MonkDCBonus 2, or with Draconic using set_cvar().

This cvar should be an integer, or it could cause the automation to not run.

For more details on implementing this in homebrew, see Specifying Class Feature DC Bonuses

Spells with Additional Support

Note

-choice always transforms the argument to lowercase (-choice FIre will be treated as -choice fire), making it case insensitive.

Additionally, all of the options below use the in operator, so you can use partial matches (-choice fire will match -choice fireball)

Absorb Elements

You can have the automation automatically apply the damage type resistance you want to absorb using -choice [element] (-choice fire for instance).

Additionally, you can have the automation heal you for half the damage you absorb by adding -amt [amount] to the end of the command. (-amt 5 for instance). It will half the damage you specify, and heal you for that amount.

You can use both of these together (-choice fire -amt 5 for instance).

Alter Self

You can specify the type of alteration you want to take with the -choice argument.

	-choice aquaticswimwater for the Aquatic Adaptation option

	-choice appearancealter for the Change Appearance option

	-choice naturalweapon for the Natural Weapons option

Blindness/Deafness

You can specify the type of hindrance you want to apply with the -choice argument.

	-choice blindness for the Blindness option

	-choice deafness for the Deafness option

Dragon’s Breath

You can specify the type of damage you want to apply with the -choice argument. If a choice is not provided at cast time, it will do [chromatic] damage by default, and you will need to use -choice [element] to specify the damage type each time the breath attack is used, and adjustments may be required to the targets health, depending on resistances.

In this case, it does not check against a value, but instead just inputs whatever is given. This means you can technically give someone Pizza Breath with -choice pizza.

Eldritch Blast

Eldritch Blast has a number of Eldritch Invocations that can affect it. You can add these to your invocations cvar to have them automatically applied when you cast Eldritch Blast.

If you add agonizing blast to your invocations cvar (!cvar invocations agonizing blast), it will automatically add your charisma when casting blast now.

Additionally, if you have other (official) invocations that affect blast, you can similarly add those to that cvar (!cvar invocations agonizing blast, lance of lethargy for instance), and it will add reminder text for them as well.

Like -choice, the automation will check against a lowercase version of the cvar, so !cvar invocations Agonizing Blast will work just as well as !cvar invocations agonizing blast.

Supported Invocations

	Invocation Name

	Automation Support

	Agonizing Blast

	Adds your Charisma modifier to the damage

	Repelling Blast

	Includes reminder text

	Eldritch Spear

	Includes reminder text

	Grasp Of Hadar

	Includes reminder text

	Lance Of Lethargy

	Includes reminder text

Enhance Ability

You can specify the ability you want to enhance with the -choice argument.

	-choice bearsconstitution

	-choice bullsstrength

	-choice catsdexterity

	-choice eaglescharisma

	-choice foxsintelligence

	-choice owlswisdom

Enlarge/Reduce

You can specify the adjustment you want to apply with the -choice argument.

	-choice enlarged to enlarge the targets size

	-choice reduced to reduce the targets size

Eyebite

You can specify the type of effect you want to apply with the -choice argument.

	-choice asleep to apply the Asleep effect

	-choice panicked to apply the Panicked effect

	-choice sickened to apply the Sickened effect

Fire Shield

You can specify the type of shield you want to apply with the -choice argument.

	-choice warmfire to create a Warm Shield

	-choice chillcold to create a Chill Shield

Flame Strike

You can specify the type of additional damage you want to apply with the -choice argument when upcasting. If a choice is not provided at cast time, it will do [choice] damage by default, and adjustments may be required to the targets health, depending on resistances.

In this case, it does not check against a value, but instead just inputs whatever is given. This means you can technically have it be a Pizza Strike and deal extra [pizza] damage with -choice pizza.

Guardian of Nature

You can specify the type of form you want to apply with the -choice argument.

	-choice "primal beast" for the Primal Beast option

	-choice "great tree" for the Great Tree option

Hex

You can specify the affected ability score with -choice. This also applies to the Shift Hex action the spell grants for shifting the hex after the target dies.

	-choice strength

	-choice dexterity

	-choice constitution

	-choice intelligence

	-choice wisdom

	-choice charisma

Shield

You can have the automation automatically heal you for the damage you absorb by adding -amt [amount] to the end of the command. (-amt 5 for instance). It will heal you for the amount you specify.

Spirit Guardians

You can specify the type of damage you want to apply with the -choice argument.

	-choice goodneutralangelicfeyfae for the Radiant damage option

	-choice evilfiendish for the Necrotic damage option

Spirit Shroud

You can specify the type of damage you want to apply to the granted attack with the -choice argument. If a choice is not provided at cast time, it will do [shroud] damage by default, and adjustments may be required to the targets health, depending on resistances.

In this case, it does not check against a value, but instead just inputs whatever is given. This means you can technically have it be a Pizza Shroud deal [pizza] damage with -choice pizza.

D&D Beyond Content Integration

With the release of Avrae 2.0, users can now Link their Discord and D&D Beyond Accounts. Here are some things that you might want to know.

How do I link my D&D Beyond and Discord accounts?

You can link your accounts on the Accounts [https://www.dndbeyond.com/account] page on D&D Beyond.

Note

It may take up to 15 minutes for Avrae to recognize the link.

To check the status, use !ddb to show your D&D Beyond account link.

!ddb

Linking your accounts gives you the following benefits:

Content Access

After your accounts are linked, you will be able to access any content you have purchased on D&D Beyond.

Note

If you are in a campaign with content sharing enabled you will also have access to content shared with you.

Private Character Import

Linking your D&D Beyond and Discord accounts lets Avrae import your characters from D&D Beyond without having to
make the character sheet public.

Dice Sync

If your DM links your D&D Beyond campaign with a Discord channel using the !campaign command, any dice you roll
on your character sheet or in the D&D Beyond Player App will show up in Discord in real time!

Also, any checks, saves, or attacks you roll in the linked Discord channel will appear on your character sheet and
the Player App in real time!

Where can I go if I have issues or Questions?

The Avrae Development Discord [https://support.avrae.io] is a great place to ask questions and get help where
you need it. Come join us!

Aliasing Basics

Avrae has vast potential for making long commands simple. It allows you to create and maintain commands.
These commands can be used personally or shared with other users on a server. Let’s take a look at some of the
basics of automation that you can start using in your server.

Note

If you have experience with JSON and APIs and are looking for more advanced documentation, head on over to the Aliasing API Page.

Command Types

Avrae has a few different types of commands that are used for different purposes.

Alias - Used to shorten commands that would require a large or lengthy amount of text to use,
to run code before running an Avrae command, or to write your own custom command.
(In many cases, aliases are used to track features or abilities)

	Examples for Alias usage:
	
	Short rest

	Long rest

	Sorcerer Font of Magic

	Barbarian Rage (Effects)

	Dash, Dodge, Hide Actions

Snippet - Used to augment dice rolls like saves, attacks, or ability checks.

	Examples for Snippet usage:
	
	Guidance cantrip

	Hunter’s Mark (Damage)

	Cover (3/4, Half, etc)

	Barbarian Rage (Damage)

	Bardic Inspiration

Note

In order to prevent infinite loops, aliases cannot call other aliases.

Command Levels

There are two levels of commands that are built into Avrae: user level and server level.
Aliases and snippets can be setup at either level. Below is how to look at snippets or aliases at each level.

Note

If a user and a server have aliases with the same name, the user alias will take priority.

!alias - Will show user level aliases.

!servalias - Will show server level aliases.

!snippet - Will show user level snippets

!servsnippet - will show server level snippets

Note

To add server-level aliases or snippets, a user must have a role called “Dragonspeaker” or “Server Aliaser”.

Help

As always you can also come to the Avrae Development Discord for help with aliasing, here [https://support.avrae.io].

Aliasing Tutorials

Here are a few tutorials for aliases that were created by the Avrae Development Discord.
These should take you step by step through two example aliases.
Thanks to @Croebh#5603 and @silverbass#2407 for writing these, @Ydomat#2886 for converting them to this format, and @mobius#1442 for updating them!

Half-Orc Relentless Endurance Tutorial

By @silverbass#2407, rewritten in Drac2 by @mobius#1442

!alias orc-relentless

This sets the alias name. If creating this alias in the Avrae workshop, you’ll leave this line out.

embed

This is the base Avrae command, an embed, which makes the pretty text box. Check out !help embed for more details.

<drac2>

This specifies the start of a code block that will contain all the logic for the alias.

#Define variables for later use
cc = "Relentless Endurance"
desc = "When you are reduced to 0 hit points but not killed outright, you can drop to 1 hit point instead."
rest = "You can’t use this feature again until you finish a long rest."
hasHP = "You have not been reduced to 0 hit points."
noCC = "You do not have this ability."

This defines some string variables that the alias will use in various places. Defining them as variables allows us to use the same strings in multiple places more easily, and makes the code more legible. This line: #Define variables for later use is a comment. Anything starting with a # is ignored when the alias runs, and can be used to make your alias code more readable and easier to follow

ch=character()

This alias will be accessing the active character several times, so this defines a variable to store it for easier access.

#Create the counter if it should exist but doesn't already
if ch.race.lower() == "half-orc":
 ch.create_cc_nx(cc, 0, 1, "long", "bubble", None, None, cc, desc+" "+rest)

The alias uses a custom counter to track the use of this ability. If the character was imported from Beyond, it should create the custom counter automatically. In case the character doesn’t have the custom counter, for whatever reason, this code checks if the character’s race is Half-Orc and creates it.

if ch.race.lower() == "half-orc":

This is a simple if-statement. We check if the character’s race is Half-Orc. The lower() after the race makes it lower-case. We do this because string comparisons are case-sensitive, and making it all lower-case means we don’t have to check for Half-Orc, Half-orc, and half-orc individually. Note the :. Forgetting it is a common error when using if blocks. The code inside the block will only execute if this condition is true.

ch.create_cc_nx(cc, 0, 1, "long", "bubble", None, None, cc, desc+" "+rest)

This code will run only if the if statement is true. That is, if the character’s race is half-orc. Pay attention to the indentation shown in the code block above; this is another common error when writing if-blocks. Any code to be executed inside the block must be indented, and must all have the same indentation. Tabs or spaces will work, but you can’t mix-and match them. Each line in the block must have have the same amount and type of leading white space.

So what does this line do? It has a lot of parts, so let’s look at them in-order:

	ch.create_cc_nx This will create a custom counter on the character (ch) if it doesn’t already exist.

	cc This defines the name of the counter. In this case, it uses one of the variables declared earlier, so the counter will be Relentless Endurance

	0, 1 The next two arguments define the minimum and maximum values of the CC. Since this can only ever be used once at a time, this counter can only go between 0 (used) and 1 (available)

	"long" Next we define how the counter resets. We’re specifying that it should reset on a Long Rest.

	"bubble" This specifies how the counter should be presented. Bubble gives a depiction of the counter that is more visual and aesthetically pleasing

	None, None These next two are Reset To and Reset By, respectively. They are optional arguments for more advanced custom counters, and aren’t needed for this one.

	cc The next argumet is the Title of the counter that will be seen when setting or viewing the counter. We’re just setting it to the same thing as its title.

	desc+" "+rest Finally, this is the counter’s description. We’re using two of the previously-defined variables, joined with a space between them.

#Logic of the alias. Check for all the necessary conditions
succ = "tries to use"
if ch.cc_exists(cc) and ch.get_cc(cc) and not ch.hp:
 succ = "uses"
 D = desc
 ch.mod_cc(cc, -1)
 ch.set_hp(1)

Another if-block, this one a little more complex than the last. We’re checking more things here, and then executing more code if it meets all the conditions. Let’s break it down.

succ = "tries to use" We’re starting with this variable and giving it a default value. We’ll change it later if the alias succeeds.

Taking a closer look at the if-statement:

if ch.cc_exists(cc) and ch.get_cc(cc) and not ch.hp:

This checks if all of the trigger conditions are valid. The and combining each statement means that all of the following conditions must be met.

	ch.cc_exists(cc) This checks if this character (ch) have a custom counter (cc_exists) called “Relentless Endurance” ((cc))

	ch.get_cc(cc) This gets the value of the counter, which will be 0 (used) or 1 (not used). If-checks treat zero as False, and non-zero as True. So, if the counter is used, the if-check will fail here.

	not ch.hp Checks the character’s hp. As before, zero hit points will be considered False, and non-zero is True. The not before hand will reverse that. That means that if the character has any HP left, the if-check will fail.

If all the conditions are met, the alias will execute the code inside the block. Note that each of these lines has the same indentation. This block will do most of the mechanics work the alias is meant for. Going line-by-line:

	succ = "uses" This is the success case that will override this variable to indicate a successful use instead of a failed attempt.

	D = desc This just sets one variable to another. The alias will use D later when showing the result to the player

	ch.mod_cc(cc, -1) This will modify (mod_cc) the value of the counter (cc) by -1, reducing it from 1 to 0 and marking it as used

	ch.set_hp(1) This sets the character’s hitpoints to 1.

elif ch.hp:
 D = hasHP
elif ch.cc_exists(cc):
 D = rest
else:
 D = noCC

And this introduces a little more complexity to if-blocks! The previous if-check defined the conditions for the ability succeeding. If one or more of those conditions failed, that block would be skipped and these conditions will be checked, in order, until one succeeds. If the initial if and all of the elif conditions fail, the else will run.

After this whole if ... elif ... else block is finished, D will contain the body text of the embed, and will be one of the 4 response strings that were defined above:

	it works (desc)

	you have more than 0 hp (hasHP)

	you already used the feature (rest)

	you don’t have the counter in the first place (noCC)

T = f"{name} {succ} {cc}!"
F = f"{cc}|{ch.cc_str(cc) if ch.cc_exists(cc) else '*None*'}"

Setting some more variables that will be used in the embed. T will be used in the title of the embed, indicating either success or failure to the player. F will be the contents of a Field that will include the value of the counter in the embed (or *None* if the character doesn’t have the counter). They use fstrings, or formatted strings, to streamline the code a bit.

</drac2>

This closes off the code block and everything else will be arguments to the embed command.

-title "{{T}}"
-desc "{{D}}"
-f "{{F}}"

This will send the defined variables to the embed to be displayed.

-color <color>
-thumb <image>

This makes it look pretty, setting the embed color and the character’s image (if any) as a thumbnail

The end result is:

!alias orc-relentless embed
<drac2>
#Define variables for later use
cc = "Relentless Endurance"
desc = "When you are reduced to 0 hit points but not killed outright, you can drop to 1 hit point instead."
rest = "You can’t use this feature again until you finish a long rest."
hasHP = "You have not been reduced to 0 hit points."
noCC = "You do not have this ability."
ch=character()

#Create the counter if it should exist but doesn't already
if ch.race.lower() == "half-orc":
 ch.create_cc_nx(cc, 0, 1, "long", "bubble", None, None, cc, desc+" "+rest)

#Logic of the alias. Check for all the necessary conditions
succ = "tries to use"
if ch.cc_exists(cc) and ch.get_cc(cc) and not ch.hp:
 succ = "uses"
 D = desc
 ch.mod_cc(cc, -1)
 ch.set_hp(1)
elif ch.hp:
 D = hasHP
elif ch.cc_exists(cc):
 D = rest
else:
 D = noCC

#Prepare the output
T = f"{name} {succ} {cc}!"
F = f"{cc}|{ch.cc_str(cc) if ch.cc_exists(cc) else '*None*'}"
</drac2>
-title "{{T}}"
-desc "{{D}}"
-f "{{F}}"
-color <color>
-thumb <image>

Insult Tutorial

By @Croebh#5603 with minor drac2 updates by @mobius#1442

!servalias insult embed

This creates a servalias named insult, calling the command embed.

<drac2>

This specifies the start of a code block.

G = get_gvar("68c31679-634d-46de-999b-4e20b1f8b172")

This sets a local variable, G to the contents of the gvar with the ID 68c31679-634d-46de-999b-4e20b1f8b172.
The get_gvar() function grabs the content of the Gvar as plain text.

L = [x.split(",") for x in G.split("\n\n")]

This sets a local variable, L to a list comprehension.
What that is doing is breaking down the variable G into a list of lists.

G.split("\n\n")

So, this is splitting text everytime there is two line breaks. In this case, it ends up being in three parts.

x.split(",") for x in

This part is saying for each part of the split we did above, call that part x, then split THAT part on every comma.
So L ends up being something like [["Words","Stuff"],["Other","Words","More!"],["More","Words"]]

I = [x.pop(roll(f'1d{len(x)}-1')).title() for x in L]

This sets another local variable, I, to another list comprehension, this time iterating on the variable L.

x.pop(roll(f'1d{len(x)}-1')).title()

Okay, a little more complicated. We’re going to start in the middle.

f'1d{len(x)}-1'

So, this is an f-string, or formatted strings. It allows us to run code in the middle of string, in this case
{len(x)}, which will be the length of x (which is the current part of L that we’re looking at.).
So in our example, say we’re looking at the first part of L, which is ["words","stuff"].
The length of this is 2, so it will return the string, 1d2-1. The -1 is important because lists are 0-indexed,
that is, the first item in the list has an index of 0 (as opposed to 1).

roll()

This rolls the returned string, which as we determined above, is 1d2-1. Lets say it returns 1.

x.pop()

What this does is pop the item at the given index out of the list. This removes the item from the list, and returns it.
This removes the chance of that particular item being chosen again. With our result of 1, this will return the second
item (because its index-0), which is stuff. This will make x be ["words"] now.

.title()

This just capitalizes the first character of each word in the string. Now it will return Words

Now, iterating over this list could make I ["Words","More!","Words"], and those would be removed from L,
so L is now [["stuff"],["Other","Words"],["More"]]

aL = L[0] + L[1]

This sets the variable aL to the combination of the first results of L, so ["stuff"] and ["Other","Words"],
making aL ["stuff","Other","Words"], as they were added together. This doesn’t remove those two lists from L

add = [aL.pop(roll(f'1d{len(aL)-1}')).title() for x in range(int("&1&".strip("&")))]

Another fun one. This sets the variable add to another list comprehension, this time on a varible list.

range(int("&1&".strip("&")))

&1& is a placeholder that gets replaced by the first argument given to the alias.
So with !insult 3, &1& would return 3. However, with no args given, it doesn’t get replaced,
and stays as &1&.

.strip('&')

So, this strips the ‘&’ character from either side of the string. This lets us have a default of “1” when no arguments
given (because “&1&” with the “&“‘s removed is “1”)

int()

this converts the string to a integer. This will error if the first arg is anything other than a number
(like if anyone were to !insult silverbass)

range()

This creates a list of numbers. In this case, because only one argument is given to it, it creates a list of numbers
from 0 to the number given, not including that number. So with an argument of 1, it will make a list [0], but with an
argument of 3, it will return [0,1,2]

aL.pop(roll(f'1d{len(aL)-1}')).title()

More fun, but its basically the exact same as the last time. A formatted string, this time calling the length of the
aL list as opposed to the current iteration. A roll of that string, and then a pop out of aL, returning and removing
the given index, then capitalizing it.

For this example, lets say the user did !insult 2. So the range will return [0,1], making it do the
function twice. The length of aL the first time is 3, so it will roll 1d3-1, let’s say it returns 0.
This will get popped out of aL as “Stuff”

The second time it runs, the length is 2 (because we just removed one result), so it will roll 1d2-1.
This time lets say we got 1, so the second time it will return “Words”.

So add is now ["Stuff", "Words"]

I = [I[0], I[1]] + add + [I[2]]

This overwrites the variable I with a new list.

[I[0], I[1]]

So this will be the first two items in I, "Words" and "More!", making it ["Words","More!"].

add is just the entire add variable, ["Stuff", "Words"]

And finally, [I[2]] is the third (and final) item in I, "Words"

Combining them all together, the variable I is now, ["Words","More!","Stuff", "Words","Words"]

I = " ".join(I)

This joins the contents of the variable I, putting space (” “) between each item. So in this case, I now contains
"Words More! Stuff Words Words"

</drac2>

This closes off the code block and everything else will be arguments to the embed command.

-title "You {{I}}!"

This adds a -title to the embed the alias starts with. The contents of this title will be "You Words More! Stuff Words Words!"

-thumb <image> -color <color>

This just sets the thumbnail and color of the embed to those that are set on your character.

The end result is:

!servalias insult embed
<drac2>
G = get_gvar("68c31679-634d-46de-999b-4e20b1f8b172")
L = [x.split(",") for x in G.split("\n\n")]
I = [x.pop(roll(f'1d{len(x)}-1')).title() for x in L]
aL = L[0] + L[1]
add = [aL.pop(roll(f'1d{len(aL)-1}')).title() for x in range(int("&1&".strip("&")))]
I = [I[0], I[1]] + add + [I[2]]
I = " ".join(I)
</drac2>
-title "You {{I}}!"
-thumb <image> -color <color>

Aliasing API

So you want to write aliases for your commonly used commands - cool!
This cheatsheet details some of the nitty-gritty syntactical shenanigans that you can use to make your aliases very powerful.

When placed inline in an alias, any syntax in the syntax table will have the listed effect.
For a list of built-in cvars, see the Cvar Table.

For a list of user-created aliases, plus help aliasing, join the Avrae Discord [https://support.avrae.io]!

Draconic

The language used in Avrae aliases is a custom modified version of Python, called Draconic. In most cases,
Draconic uses the same syntax and base types as Python - any exceptions will be documented here!

Note

It is highly recommended to be familiar with the Python language before diving into Draconic, as the two
use the same syntax and types.

As Draconic is meant to both be an operational and templating language, there are multiple ways to use Draconic
inside your alias.

Syntax

This section details the special syntax used in the Draconic language. Note that these syntaxes are only evaluated in
an alias, the test command, or the tembed command.

Rolls

Syntax: {diceexpr}

Description: Rolls the expression inside the curly braces and is replaced by the result. If an error occurs,
is replaced by 0. Variables are allowed inside the expression.

Examples

>>> !test Rolling 1d20: {1d20}
Rolling 1d20: 7

>>> !test Strength check: {1d20 + strengthMod}
Strength check: 21

Values

Syntax: <var>

Description: Replaced by the value of the variable, implicitly cast to str.
The variable can be a user variable, character variable, or a local variable set in a Draconic script.

Examples

>>> !test My strength modifier is: <strengthMod>
My strength modifier is: 2

Draconic Expressions

Syntax: {{code}}

Description: Runs the Draconic code inside the braces and is replaced by the value the code evaluates to.
If the code evaluates to None, is removed from the output, otherwise it is cast to str.

See below for a list of builtin Draconic functions.

Examples

>>> !test 1 more than my strength score is {{strength + 1}}!
1 more than my strength score is 15!

>>> !test My roll was {{"greater than" if roll("1d20") > 10 else "less than"}} 10!
My roll was less than 10!

Draconic Blocks

Syntax

<drac2>
code
</drac2>

Description: Runs the multi-line Draconic code between the delimiters. If a non-None value is returned (via the
return keyword), is replaced by the returned value, cast to str.

Examples

>>> !test <drac2>
... out = []
... for i in range(5):
... out.append(i * 2)
... if i == 2:
... break
... return out
... </drac2>
[0, 2, 4]

>>> !test <drac2>
... out = []
... for stat in ['strength', 'dexterity', 'constitution']:
... out.append(get(stat))
... </drac2>
... My STR, DEX, and CON scores are {{out}}!
My STR, DEX, and CON scores are [12, 18, 14]!

Argument Parsing

Often times when writing aliases, you will need to access user input. These special strings will be replaced
with user arguments (if applicable)!

Non-Code, Space-Aware

Syntax: %1%, %2%, …, %N%

Description: Replaced with the Nth argument passed to the alias. If the argument contains spaces, the replacement
will contain quotes around the argument.

Non-Code, Preserving All

Syntax: %*%

Description: Replaced with the unmodified string following the alias.

In Code, Quote-Escaping

Syntax: &1&, &2&, etc.

Description: Replaced with the Nth argument passed to the alias. If the argument contains spaces, the replacement
will not contain quotes around the argument. Additionally, any quotes in the argument will be backslash-escaped.

In Code, Quote-Escaping All

Syntax: &*&

Description: Replaced with the string following the alias. Any quotes will be backslash-escaped.

In Code, List Literal

Syntax: &ARGS&

Description: Replaced with a list representation of all arguments - usually you’ll want to put this in Draconic
code.

Examples

>>> !alias asdf echo %2% %1%
>>> !asdf first "second arg"
"second arg" first

>>> !alias asdf echo %*% first
>>> !asdf second "third word"
second "third word" first

>>> !alias asdf echo &1& was the first arg
>>> !asdf "hello world"
hello world was the first arg

>>> !alias asdf echo &*& words
>>> !asdf second "third word"
second \"third word\" words

>>> !alias asdf echo &ARGS&
>>> !asdf first "second arg"
['first', 'second arg']

Cvar Table

This table lists the available cvars when a character is active.

	Name

	Description

	Type

	charisma

	Charisma score.

	int

	charismaMod

	Charisma modifier.

	int

	charismaSave

	Charisma saving throw modifier.

	int

	constitution

	Constitution score.

	int

	constitutionMod

	Constitution modifier.

	int

	constitutionSave

	Constitution saving throw modifier.

	int

	dexterity

	Dexterity score.

	int

	dexterityMod

	Dexterity modifier.

	int

	dexteritySave

	Dexterity saving throw modifier.

	int

	intelligence

	Intelligence score.

	int

	intelligenceMod

	Intelligence modifier.

	int

	intelligenceSave

	Intelligence saving throw modifier.

	int

	strength

	Strength score.

	int

	strengthMod

	Strength modifier.

	int

	strengthSave

	Strength saving throw modifier.

	int

	wisdom

	Wisdom score.

	int

	wisdomMod

	Wisdom modifier.

	int

	wisdomSave

	Wisdom saving throw modifier.

	int

	armor

	Armor Class.

	int

	color

	The CSettings color for the character

	str

	description

	Full character description.

	str

	hp

	Maximum hit points.

	int

	image

	Character image URL.

	str

	level

	Character level.

	int

	name

	The character’s name.

	str

	proficiencyBonus

	Proficiency bonus.

	int

	spell

	The character’s spellcasting ability mod.

	int

	XLevel

	How many levels a character has in class X.

	int

Note

XLevel is not guaranteed to exist for any given X, and may not exist for GSheet 1.3/1.4 characters.
It is recommended to use AliasCharacter.levels.get() to access arbitrary levels instead.

Function Reference

Warning

It may be possible to corrupt your character data by incorrectly calling functions. Script at your own risk.

Python Builtins

	
abs(x)

	Takes a number (float or int) and returns the absolute value of that number.

	Parameters

	x (float [https://docs.python.org/3/library/functions.html#float] or int [https://docs.python.org/3/library/functions.html#int]) – The number to find the absolute value of.

	Returns

	The absolute value of x.

	Return type

	float [https://docs.python.org/3/library/functions.html#float] or int [https://docs.python.org/3/library/functions.html#int]

	
all(iterable)

	Return True if all elements of the iterable are true, or if the iterable is empty.

	
any(iterable)

	Return True if any element of the iterable is true. If the iterable is empty, return False.

	
ceil(x)

	Rounds a number up to the nearest integer. See math.ceil() [https://docs.python.org/3/library/math.html#math.ceil].

	Parameters

	x (float [https://docs.python.org/3/library/functions.html#float] or int [https://docs.python.org/3/library/functions.html#int]) – The number to round.

	Returns

	The smallest integer >= x.

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	
enumerate(x[, start=0)

	Returns a iterable of tuples containing a count and the values from the iterable.

	Parameters

	
	x (iterable) – The value to convert.

	start (int [https://docs.python.org/3/library/functions.html#int]) – The starting value for the count

	Returns

	enumerate of count and objects.

	Return type

	iterable[tuple [https://docs.python.org/3/library/stdtypes.html#tuple][int [https://docs.python.org/3/library/functions.html#int], any]]

	
float(x)

	Converts x to a floating point number.

	Parameters

	x (str [https://docs.python.org/3/library/stdtypes.html#str], int [https://docs.python.org/3/library/functions.html#int], or float [https://docs.python.org/3/library/functions.html#float]) – The value to convert.

	Returns

	The float.

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

	
floor(x)

	Rounds a number down to the nearest integer. See math.floor() [https://docs.python.org/3/library/math.html#math.floor].

	Parameters

	x (float [https://docs.python.org/3/library/functions.html#float] or int [https://docs.python.org/3/library/functions.html#int]) – The number to round.

	Returns

	The largest integer <= x.

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	
int(x)

	Converts x to an integer.

	Parameters

	x (str [https://docs.python.org/3/library/stdtypes.html#str], int [https://docs.python.org/3/library/functions.html#int], or float [https://docs.python.org/3/library/functions.html#float]) – The value to convert.

	Returns

	The integer.

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	
len(s)

	Return the length (the number of items) of an object. The argument may be a sequence
(such as a string, bytes, tuple, list, or range) or a collection (such as a dictionary, set, or frozen set).

	Returns

	The length of the argument.

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	
max(iterable, *[, key, default])

	
max(arg1, arg2, *args[, key])

	Return the largest item in an iterable or the largest of two or more arguments.

If one positional argument is provided, it should be an iterable. The largest item in the iterable is returned.
If two or more positional arguments are provided, the largest of the positional arguments is returned.

There are two optional keyword-only arguments.
The key argument specifies a one-argument ordering function like that used for list.sort().
The default argument specifies an object to return if the provided iterable is empty.
If the iterable is empty and default is not provided, a ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] is raised.

If multiple items are maximal, the function returns the first one encountered.

	
min(iterable, *[, key, default])

	
min(arg1, arg2, *args[, key])

	Return the smallest item in an iterable or the smallest of two or more arguments.

If one positional argument is provided, it should be an iterable. The smallest item in the iterable is returned.
If two or more positional arguments are provided, the smallest of the positional arguments is returned.

There are two optional keyword-only arguments.
The key argument specifies a one-argument ordering function like that used for list.sort().
The default argument specifies an object to return if the provided iterable is empty.
If the iterable is empty and default is not provided, a ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] is raised.

If multiple items are minimal, the function returns the first one encountered.

	
range(stop)

	
range(start, stop[, step])

	Returns a list of numbers in the specified range.

If the step argument is omitted, it defaults to 1. If the start argument is omitted, it defaults to 0.
If step is zero, ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] is raised.

For a positive step, the contents of a range r are determined by the formula
r[i] = start + step*i where i >= 0 and r[i] < stop.

For a negative step, the contents of the range are still determined by the formula
r[i] = start + step*i, but the constraints are i >= 0 and r[i] > stop.

A range object will be empty if r[0] does not meet the value constraint.
Ranges do support negative indices, but these are interpreted as indexing from the end of the sequence determined
by the positive indices.

	Parameters

	
	start (int [https://docs.python.org/3/library/functions.html#int]) – The start of the range (inclusive).

	stop (int [https://docs.python.org/3/library/functions.html#int]) – The end of the range (exclusive).

	step (int [https://docs.python.org/3/library/functions.html#int]) – The step value.

	Returns

	The range of numbers.

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
round(number[, ndigits])

	Return number rounded to ndigits precision after the decimal point.
If ndigits is omitted or is None, it returns the nearest integer to its input.

	Parameters

	
	number (float [https://docs.python.org/3/library/functions.html#float] or int [https://docs.python.org/3/library/functions.html#int]) – The number to round.

	ndigits (int [https://docs.python.org/3/library/functions.html#int]) – The number of digits after the decimal point to keep.

	Returns

	The rounded number.

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

	
sqrt(x)

	See math.sqrt() [https://docs.python.org/3/library/math.html#math.sqrt].

	Returns

	The square root of x.

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

	
str(x)

	Converts x to a string.

	Parameters

	x (Any) – The value to convert.

	Returns

	The string.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
sum(iterable[, start])

	Sums start and the items of an iterable from left to right and returns the total. start defaults to 0.
The iterable’s items are normally numbers, and the start value is not allowed to be a string.

	
time()

	Return the time in seconds since the UNIX epoch (Jan 1, 1970, midnight UTC) as a floating point number.
See time.time() [https://docs.python.org/3/library/time.html#time.time].

	Returns

	The epoch time.

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

Draconic Functions

	
argparse(args, parse_ephem=True)

	Given an argument string or list, returns the parsed arguments using the argument nondeterministic finite automaton.

If parse_ephem is False, arguments like -d1 are saved literally rather than as an ephemeral argument.

Note

Arguments must begin with a letter and not end with a number (e.g. d, e12s, a!!). Values immediately
following a flag argument (i.e. one that starts with -) will not be parsed as arguments unless they are also
a flag argument.

There are three exceptions to this rule: -i, -h, and -v, none of which take additional values.

	Parameters

	
	args – A list or string of arguments.

	parse_ephem (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether to treat args like -d1 as ephemeral arguments or literal ones.

	Returns

	The parsed arguments

	Return type

	ParsedArguments()

>>> args = argparse("adv -rr 2 -b 1d4[bless]")
>>> args.adv()
1
>>> args.last('rr')
'2'
>>> args.get('b')
['1d4[bless]']

	
character()

	Returns the active character if one is. Otherwise, raises a FunctionRequiresCharacter error.

	Return type

	AliasCharacter

	
combat()

	Returns the combat active in the channel if one is. Otherwise, returns None.

	Return type

	SimpleCombat

Note

If called outside of a character context, combat().me will be None.

	
ctx

	The context the alias was invoked in. See AliasContext for more details.

Note that this is an automatically bound name and not a function.

	Type

	AliasContext

	
delete_uvar(name)

	Deletes a user variable. Does nothing if the variable does not exist.

	Parameters

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the variable to delete.

	
load_yaml(self, yamlstr)

	Loads an object from a YAML string. See yaml.safe_load [https://pyyaml.org/wiki/PyYAMLDocumentation].

	
dump_yaml(self, obj, indent=2)

	Serializes an object to a YAML string. See yaml.safe_dump [https://pyyaml.org/wiki/PyYAMLDocumentation].

	
load_json(self, jsonstr)

	Loads an object from a JSON string. See json.loads() [https://docs.python.org/3/library/json.html#json.loads].

	
dump_json(self, obj)

	Serializes an object to a JSON string. See json.dumps() [https://docs.python.org/3/library/json.html#json.dumps].

	
err(reason, pm_user=False)

	Stops evaluation of an alias and shows the user an error.

	Parameters

	
	reason (str [https://docs.python.org/3/library/stdtypes.html#str]) – The error to show.

	pm_user (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether or not to PM the user the error traceback.

	Raises

	AliasException

	
exists(name)

	Returns whether or not a name is set in the current evaluation context.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
get(name, default=None)

	Gets the value of a name, or returns default if the name is not set.

Retrieves names in the order of local > cvar > uvar. Does not interact with svars.

	Parameters

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name to retrieve.

	default – What to return if the name is not set.

	
get_gvar(address)

	Retrieves and returns the value of a gvar (global variable).

	Parameters

	address (str [https://docs.python.org/3/library/stdtypes.html#str]) – The gvar address.

	Returns

	The value of the gvar.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
get_svar(name[, default=None])

	Retrieves and returns the value of a svar (server variable).

	Parameters

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the svar.

	default – What to return if the name is not set.

	Returns

	The value of the svar, or the default value if it does not exist.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str] or None

	
get_uvars()

	Retrieves and returns the dict of uvars.

	Returns

	A dict of all uvars.

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
get_uvar(name[, default=None])

	Retrieves and returns the value of a uvar (user variable).

	Parameters

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the uvar.

	default – What to return if the name is not set.

	Returns

	The value of the uvar, or the default value if it does not exist.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str] or None

	
randint(stop)

	
randint(start, stop[, step])

	Returns a random integer in the range [start..stop).

If the step argument is omitted, it defaults to 1. If the start argument is omitted, it defaults to 0.
If step is zero, ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] is raised.

For a positive step, the contents of a range r are determined by the formula
r[i] = start + step*i where i >= 0 and r[i] < stop.

For a negative step, the contents of the range are still determined by the formula
r[i] = start + step*i, but the constraints are i >= 0 and r[i] > stop.

	Parameters

	
	start (int [https://docs.python.org/3/library/functions.html#int]) – The lower limit (inclusive).

	stop (int [https://docs.python.org/3/library/functions.html#int]) – The upper limit (non-inclusive).

	step (int [https://docs.python.org/3/library/functions.html#int]) – The step value.

	Returns

	A random integer.

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	
randchoice(seq)

	Returns a random item from seq.

	Parameters

	seq (iterable.) – The itterable to choose a random item from.

	Returns

	A random item from the iterable.

	Return type

	Any.

	
randchoices(population, weights=None, cum_weights=None, k=1)

	Returns a list of random items from population of k length with either weighted or cumulatively weighted odds.
The weights [2,1,1] are equal to cum_weights [2,3,4].
If no weights or cum_weights are input, the items in population will have equal odds of being chosen.
If no k is input, the output length will be 1.

	Parameters

	
	population (iterable.) – The itterable to choose random items from.

	weights (list [https://docs.python.org/3/library/stdtypes.html#list] of integers, floats, and fractions but not decimals) – The odds for each item in the population iterable.

	cum_weights (list [https://docs.python.org/3/library/stdtypes.html#list] of integers, floats, and fractions but not decimals) – The cumulative odds for each item in the population itterable.

	k (int [https://docs.python.org/3/library/functions.html#int]) – The length of the output.

	Returns

	A list of random items from the iterable.

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
roll(dice)

	Rolls dice and returns the total.

	Parameters

	dice (str [https://docs.python.org/3/library/stdtypes.html#str]) – The dice to roll.

	Returns

	The roll’s total, or 0 if an error was encountered.

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	
set_uvar(name, value)

	Sets a user variable.

	Parameters

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the variable to set.

	value (str [https://docs.python.org/3/library/stdtypes.html#str]) – The value to set it to.

	
set_uvar_nx(name, value)

	Sets a user variable if there is not already an existing name.

	Parameters

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the variable to set.

	value (str [https://docs.python.org/3/library/stdtypes.html#str]) – The value to set it to.

	
signature(data=0)

	Returns a unique signature encoding the time the alias was invoked, the channel it was invoked in, the invoker,
the id of the workshop collection the alias originates from (if applicable), and whether the caller was a
personal/server alias/snippet.

This signature is signed with a secret that guarantees that valid signatures cannot be spoofed; use this when
it is necessary to audit the invocations of an alias (e.g. to ensure that a server version of the alias is being
used over a personal version).

Use verify_signature() in a separate alias to verify the integrity of a generated signature and unpack
the encoded data.

	Parameters

	data (int [https://docs.python.org/3/library/functions.html#int]) – Some user-supplied data to encode in the signature. This must be an unsigned integer that fits
within 5 bits (i.e. a value [0..31]). Default 0.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
verify_signature(data)

	Verifies that a given signature is valid. The signature should have been generated by signature().

If the signature is not valid, raises a ValueError. Otherwise, returns a dict with the following keys
representing the context the given signature was generated in:

{
 "message_id": int,
 "channel_id": int,
 "author_id": int,
 "timestamp": float,
 "workshop_collection_id": str?, # None if the caller was not a workshop object
 "scope": str, # one of UNKNOWN, PERSONAL_ALIAS, SERVER_ALIAS, PERSONAL_SNIPPET, SERVER_SNIPPET, COMMAND_TEST
 "user_data": int,
 "guild_id": int?, # may be None
 "guild": AliasGuild?, # may be None
 "channel": AliasChannel?, # may be None
 "author": AliasAuthor?, # may be None
}

	Parameters

	data (str [https://docs.python.org/3/library/stdtypes.html#str]) – The signature to verify.

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

If you are building your own application and want to verify these signatures yourself, we provide an API endpoint
you can use to verify signatures!

Below is an example of Python code to verify a signature using the httpx (requests-like) library:

signature = "Dc3SEuDEMKIJZ0qbasAAAQKZ2xjlQgAAAAAAAAAAAAAAAAAABQ==.B5RLdufsD9utKaDou+94LEfOgpA="
async with httpx.AsyncClient() as client:
 r = await client.post(
 "https://api.avrae.io/bot/signature/verify",
 json={"signature": signature}
)
print(r.json(indent=2))

The endpoint’s response model is the same as verify_signature() sans the guild, channel, and author
keys (IDs are still present).

	
typeof(inst)

	Returns the name of the type of an object.

	Parameters

	inst – The object to find the type of.

	Returns

	The type of the object.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
using(self, **imports)

	Imports Draconic global variables as modules in the current namespace. See Using Imports for details.

Usually this should be the first statement in a code block if imports are used.

Warning

Only import modules from trusted sources! The entire contents of an imported module is executed once upon
import, and can do bad things like delete all of your variables.

>>> using(
... hello="50943a96-381b-427e-adb9-eea8ebf61f27"
...)
>>> hello.hello()
"Hello world!"

	
uvar_exists(name)

	Returns whether a uvar exists.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
vroll(rollStr, multiply=1, add=0)

	Rolls dice and returns a detailed roll result.

	Parameters

	
	dice (str [https://docs.python.org/3/library/stdtypes.html#str]) – The dice to roll.

	multiply (int [https://docs.python.org/3/library/functions.html#int]) – How many times to multiply each set of dice by.

	add (int [https://docs.python.org/3/library/functions.html#int]) – How many dice to add to each set of dice.

	Returns

	The result of the roll.

	Return type

	SimpleRollResult

	
parse_coins(args: str [https://docs.python.org/3/library/stdtypes.html#str]) → dict [https://docs.python.org/3/library/stdtypes.html#dict]

	Parses a coin string into a representation of each currency.
If the user input is a decimal number, assumes gold pieces.
Otherwise, allows the user to specify currencies in the form ‘+1gp -2sp 3cp’

	Parameters

	
	args (str [https://docs.python.org/3/library/stdtypes.html#str]) – The coin string to parse

	include_total (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether to include the “total” key

	Returns

	A dict of the coin changes, e.g. {"pp":0, "gp":1, "ep":0, "sp":-2, "cp":3, "total": 0.83}

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

Variable Scopes

In addition to Python’s normal variable scoping rules, Avrae introduces 4 new scopes in the form of character variables,
user variables, server variables, and global variables. The intended purpose and binding rules of each are detailed
below.

	Variable Type

	Read

	Write

	Binding

	Scope

	Who

	Cvar

	Yes

	Yes

	Implicit

	Character

	User

	Uvar

	Yes

	Yes

	Implicit

	User

	User

	Svar

	Yes

	No

	Explicit

	Server

	Anyone on server

	Gvar

	Yes

	No

	Explicit

	Everywhere

	Anyone

	Init Metadata

	Yes

	Yes

	Explicit

	Initiative

	Anyone in channel

Character Variables

aka cvars

Character variables are variables bound to a character. These are usually used to set character-specific defaults
or options for aliases and snippets (e.g. a character’s familiar type/name). When running an alias or snippet, cvars are
implicitly bound as local variables in the runtime at the runtime’s instantiation.

Cvars can be written or deleted in Draconic using AliasCharacter.set_cvar() and
AliasCharacter.delete_cvar(), respectively.

All characters contain some built-in character variables (see Cvar Table). These cannot be overwritten.

User Variables

aka uvars

User variables are bound per Discord user, and will go with you regardless of what server or character you are on.
These variables are usually used for user-specific options (e.g. a user’s timezone, favorite color, etc.). When running
an alias or snippet, uvars are implicitly bound as local variables in the runtime at the runtime’s instantiation. If a
cvar and uvar have the same name, the cvar takes priority.

Uvars can be written or deleted in Draconic using set_uvar() or
delete_uvar(), respectively.

Server Variables

aka svars

Server variables are named variables bound per Discord server, and can only be accessed in the Discord server they are
bound in. These variables are usually used for server-specific options for server aliases (e.g. stat rolling methods,
server calendar, etc.). Unlike cvars and uvars, svars must be explicitly retrieved in an alias by calling
get_svar(). Svars can be listed and read by anyone on the server, so be
careful what data you store!

Svars can only be written or deleted using !svar <name> <value> and !svar delete <name>, respectively. These
commands can only be issued by a member who has Administrator Discord permissions or a Discord role named “Server
Aliaser” or “Dragonspeaker”.

Global Variables

aka gvars

Global variables are uniquely named variables that are accessible by anyone, anywhere in Avrae. These variables are
usually used for storing large amounts of read-only data (e.g. an alias’ help message, a JSON file containing cards,
etc.). These variables are automatically assigned a unique name on creation (in the form of a 36 character UUID), and
must be explicitly retrieved in an alias by calling get_gvar().
Gvars can be read by anyone, so be careful what data you store!

Gvars can only be created using !gvar create <value>, and by default can only be edited by its creator. See
!help gvar for more information.

Honorable Mention: Initiative Metadata

Initiative metadata is a form of key-value pair storage attached to an ongoing initiative in a given channel. This
storage is usually used for storing a medium-sized amount of programmatic information about an ongoing initiative (e.g.
an alias’ metadata on each combatant).

Metadata can be created, retrieved, and deleted using the SimpleCombat.set_metadata(),
SimpleCombat.get_metadata(), and SimpleCombat.delete_metadata() methods, respectively.

Using Imports

Imports are a way for alias authors to share common code across multiple aliases, provide common libraries of code for
other authors to write code compatible with your alias, and more!

If you already have the address of a module to import, use using() at the
top of your code block in order to import the module into your namespace. For example:

!alias hello-world echo <drac2>
using(
 hello="50943a96-381b-427e-adb9-eea8ebf61f27"
)
return hello.hello()
</drac2>

Use !gvar 50943a96-381b-427e-adb9-eea8ebf61f27 to take a peek at the hello module!

You can also import multiple modules in the same expression:

!alias hello-world echo <drac2>
using(
 hello="50943a96-381b-427e-adb9-eea8ebf61f27",
 hello_utils="0bbddb9f-c86f-4af8-9e04-1964425b1554"
)
return f"{hello.hello('you')}\n{hello_utils.hello_to_my_character()}"
</drac2>

The hello_utils module (!gvar 0bbddb9f-c86f-4af8-9e04-1964425b1554) also demonstrates how modules can import
other modules!

Each imported module is bound to a namespace that contains each of the names (constants, functions, etc) defined in the
module. For example, the hello module (50943a96-381b-427e-adb9-eea8ebf61f27) defines the HELLO_WORLD
constant and hello() function, so a consumer could access these with hello.HELLO_WORLD and hello.hello(),
respectively.

Warning

Only import modules from trusted sources! The entire contents of an imported module is executed once upon
import, and can do bad things like delete all of your variables.

All gvar modules are open-source by default, so it is encouraged to view the imported module using !gvar.

Note

Modules do not have access to the argument parsing special syntax (i.e. &ARGS&, %1%, etc), and the variables
listed in the Cvar Table are not implicitly bound in a module’s execution.

Writing Modules

Modules are easy to publish and update! Simply create a gvar that contains valid Draconic code (without wrapping it
in any delimiters such as <drac2>).

We encourage modules to follow the following format to make them easy to read:

recommended_module_name
This is a short description about what the module does.
#
SOME_CONSTANT: some documentation about what this constant is
some_function(show, the, args): some short documentation about what this function does
and how to call it
wow, this is long! use indentation if you need multiple lines
but otherwise longer documentation should go in the function's """docstring"""

SOME_CONSTANT = 3.141592

def some_function(show, the, args):
 """Here is where the longer documentation about the function can go."""
 pass

Use !gvar 50943a96-381b-427e-adb9-eea8ebf61f27 and !gvar 0bbddb9f-c86f-4af8-9e04-1964425b1554 to view
the hello and hello_utils example modules used above for an example!

Note

Because all gvars are public to anyone who knows the address, modules are open-source by default.

Catching Exceptions

Draconic supports a modified version of Python’s exception handling (“try-except”) syntax, the most significant
difference being that exceptions must be caught explicitly by passing the exact name of the exception type to the
except clause as a string or tuple of strings. A bare except may also be used to catch any exception in the
try block.

For example, to cast an arbitrary string to an integer and catch errors raised by int():

!test <drac2>
some_string = "123"
try:
 return int(some_string)
except ("ValueError", "TypeError"):
 return "I couldn't parse an int!"
</drac2>

Note

Unlike Python, only the exact exception type given by a string will be matched, without subclass checking.

Draconic try statements also support else and finally blocks, similar to Python.

See Also

Draconic’s syntax is very similar to Python. Other Python features supported in Draconic include:

	Ternary Operators [https://stackoverflow.com/a/394814] (x if a else y)

	Slicing [https://stackoverflow.com/a/663175] ("Hello world!"[2:4])

	Operators [https://docs.python.org/3/reference/expressions.html#unary-arithmetic-and-bitwise-operations] (2 + 2, "foo" in "foobar", etc)

	Assignments [https://docs.python.org/3/reference/simple_stmts.html#assignment-statements] (a = 15)

	List Comprehensions [https://docs.python.org/3/tutorial/datastructures.html#list-comprehensions]

	Functions [https://docs.python.org/3/tutorial/controlflow.html#defining-functions]

	Lambda Expressions [https://docs.python.org/3/tutorial/controlflow.html#lambda-expressions]

	Argument Unpacking [https://docs.python.org/3/tutorial/controlflow.html#unpacking-argument-lists]

Initiative Models

SimpleCombat

	
class SimpleCombat

	
	
combatants

	A list of all SimpleCombatant in combat.

	
current

	The SimpleCombatant or SimpleGroup
representing the combatant whose turn it is.

	
groups

	A list of all SimpleGroup in combat.

	
me

	The SimpleCombatant representing the active character in combat, or None
if the character is not in the combat.

	
name

	The name of the combat (str), or None if no custom name is set.

	
round_num

	An int representing the round number of the combat.

	
turn_num

	An int representing the initiative score of the current turn.

	
delete_metadata(k: str [https://docs.python.org/3/library/stdtypes.html#str]) → Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]

	Removes a key from the metadata.

	Parameters

	k (str [https://docs.python.org/3/library/stdtypes.html#str]) – The metadata key to remove

	Returns

	The removed value or None if the key is not found.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str] or None

>>> delete_metadata("Test")
'{"Status": ["Mario", 1, 2]}'

	
end_round()

	Moves initiative to just before the next round (no active combatant or group).
Ending the round will not tick any events with durations.

	
get_combatant(name, strict=None)

	Gets a combatant by its name or ID.

	Parameters

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name or id of the combatant or group to get.

	strict – Whether combatant name must be a full case insensitive match.
If this is None (default), attempts a strict match with fallback to partial match.
If this is False, it returns the first partial match.
If this is True, it will only return a strict match.

	Returns

	The combatant or group or None.

	Return type

	SimpleCombatant or ~aliasing.api.combat.SimpleGroup

	
get_group(name, strict=None)

	Gets a SimpleGroup that matches on name.

	Parameters

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the group to get.

	strict – Whether combatant name must be a full case insensitive match.
If this is None (default), attempts a strict match with fallback to partial match.
If this is False, it returns the first partial match.
If this is True, it will only return a strict match.

	Returns

	The group or None.

	Return type

	SimpleGroup

	
get_metadata(k: str [https://docs.python.org/3/library/stdtypes.html#str], default=None) → str [https://docs.python.org/3/library/stdtypes.html#str]

	Gets a metadata value for the passed key or returns default if the name is not set.

	Parameters

	
	k (str [https://docs.python.org/3/library/stdtypes.html#str]) – The metadata key to get

	default – What to return if the name is not set.

>>> get_metadata("Test")
'{"Status": ["Mario", 1, 2]}'

	
set_metadata(k: str [https://docs.python.org/3/library/stdtypes.html#str], v: str [https://docs.python.org/3/library/stdtypes.html#str])

	Assigns a metadata key to the passed value.
Maximum size of the metadata is 100k characters, key and item inclusive.

	Parameters

	
	k (str [https://docs.python.org/3/library/stdtypes.html#str]) – The metadata key to set

	v (str [https://docs.python.org/3/library/stdtypes.html#str]) – The metadata value to set

>>> set_metadata("Test", dump_json({"Status": ["Mario", 1, 2]}))

	
set_round(round_num: int [https://docs.python.org/3/library/functions.html#int])

	Sets the current round.
Setting the round will not tick any events with durations.

	Parameters

	round_num (int [https://docs.python.org/3/library/functions.html#int]) – the new round number

SimpleCombatant

	
class SimpleCombatant(AliasStatBlock)

	Represents a combatant in combat.

	
effects

	A list of SimpleEffect active on the combatant.

	Type

	list of SimpleEffect

	
init

	What the combatant rolled for initiative.

	Type

	int [https://docs.python.org/3/library/functions.html#int]

	
initmod

	An int representing the combatant’s initiative modifier.

	Type

	int [https://docs.python.org/3/library/functions.html#int]

	
type

	The type of the object ("combatant"), to determine whether this is a group or not.

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
property ac

	The armor class of the creature.

	Return type

	int [https://docs.python.org/3/library/functions.html#int] or None

	
add_effect(name: str [https://docs.python.org/3/library/stdtypes.html#str], args: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]] = None, duration: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][int [https://docs.python.org/3/library/functions.html#int]] = None, concentration: bool [https://docs.python.org/3/library/functions.html#bool] = False, parent: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][SimpleEffect] = None, end: bool [https://docs.python.org/3/library/functions.html#bool] = False, desc: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]] = None, passive_effects: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][dict [https://docs.python.org/3/library/stdtypes.html#dict]] = None, attacks: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][list [https://docs.python.org/3/library/stdtypes.html#list][dict [https://docs.python.org/3/library/stdtypes.html#dict]]] = None, buttons: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][list [https://docs.python.org/3/library/stdtypes.html#list][dict [https://docs.python.org/3/library/stdtypes.html#dict]]] = None, tick_on_combatant_id: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]] = None)

	Adds an effect to the combatant. Returns the added effect.

Note

It is recommended to pass all arguments other than name to this method as keyword arguments (i.e.
add_effect("On Fire", duration=10)). This is not strictly enforced for backwards-compatibility.

Warning

The args argument is deprecated as of v4.1.0. Use passive_effects instead.

	Parameters

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the effect to add.

	args (str [https://docs.python.org/3/library/stdtypes.html#str]) – The effect arguments to add (same syntax as !init effect [https://avrae.io/commands#init-effect]).

	duration (int [https://docs.python.org/3/library/functions.html#int]) – The duration of the effect, in rounds. Pass None for indefinite.

	concentration (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether the effect requires concentration.

	parent (SimpleEffect) – The parent of the effect.

	end (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether the effect ends on the end of turn.

	desc (str [https://docs.python.org/3/library/stdtypes.html#str]) – A description of the effect.

	passive_effects – The passive effects this effect should grant. See Initiative Effect Args.

	attacks – The attacks granted by this effect. See Initiative Effect Args.

	buttons – The buttons granted by this effect. See Initiative Effect Args.

	tick_on_combatant_id – The ID of the combatant whose turn the effect duration ticks on (defaults to the combatant who the effect is on).

	Return type

	SimpleEffect

	
property attacks

	The attacks of the creature.

	Return type

	AliasAttackList

	
property controller

	The ID of the combatant’s controller.

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	
property creature_type

	The creature type of the creature. Will return None for players or creatures with no creature type.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str] or None

	
damage(dice_str, crit=False, d=None, c=None, critdice=0, overheal=False)

	Does damage to a combatant, and returns the rolled result and total, accounting for resistances.

	Parameters

	
	dice_str (str [https://docs.python.org/3/library/stdtypes.html#str]) – The damage to do (e.g. "1d6[acid]").

	crit (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether or not the damage should be rolled as a crit.

	d (str [https://docs.python.org/3/library/stdtypes.html#str]) – Any additional damage to add (equivalent of -d).

	c (str [https://docs.python.org/3/library/stdtypes.html#str]) – Any additional damage to add to crits (equivalent of -c).

	critdice (int [https://docs.python.org/3/library/functions.html#int]) – How many extra weapon dice to roll on a crit (in addition to normal dice).

	overheal (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether or not to allow this damage to exceed a target’s HP max.

	Returns

	Dictionary representing the results of the Damage Automation.

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
get_effect(name: str [https://docs.python.org/3/library/stdtypes.html#str], strict: bool [https://docs.python.org/3/library/functions.html#bool] = False)

	Gets a SimpleEffect, fuzzy searching (partial match) for the first match or an exact match.

	Parameters

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the effect to get.

	strict (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether effect name must be an exact match.
If this is False, it returns the first partial match.
If this is True, it will only return a strict match.

	Returns

	The effect.

	Return type

	SimpleEffect

	
property group

	The name of the group the combatant is in, or None if the combatant is not in a group.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str] or None

	
property hp

	The current HP of the creature.

	Return type

	int [https://docs.python.org/3/library/functions.html#int] or None

	
hp_str()

	Returns a string describing the creature’s current, max, and temp HP.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
property id

	The combatant’s unique identifier.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
property is_hidden

	Whether the HP, AC, Resists, etc are hidden.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
property levels

	The levels of the creature.

	Return type

	AliasLevels

	
property max_hp

	The maximum HP of the creature.

	Return type

	int [https://docs.python.org/3/library/functions.html#int] or None

	
modify_hp(amount, ignore_temp=False, overflow=True)

	Modifies the creature’s remaining HP by a given amount.

	Parameters

	
	amount (int [https://docs.python.org/3/library/functions.html#int]) – The amount of HP to add/remove.

	ignore_temp (bool [https://docs.python.org/3/library/functions.html#bool]) – If amount is negative, whether to damage temp HP first or ignore temp.

	overflow (bool [https://docs.python.org/3/library/functions.html#bool]) – If amount is positive, whether to allow overhealing or cap at the creature’s max HP.

	Returns

	A string describing the creature’s current, max, and temp HP after the change.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
property monster_name

	The monster name of the combatant. Will return None for players.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str] or None

	
property name

	The name of the creature.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
property note

	The note on the combatant. None if not set.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str] or None

	
property race

	The race of the combatant. Will return None for monsters or combatants with no race.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str] or None

	
remove_effect(name: str [https://docs.python.org/3/library/stdtypes.html#str], strict: bool [https://docs.python.org/3/library/functions.html#bool] = False)

	Removes an effect from the combatant, fuzzy searching on name or an exact match. If not found, does nothing.

	Parameters

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the effect to remove.

	strict (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether effect name must be an exact match.
If this is False, it returns the first partial match.
If this is True, it will only return a strict match.

	
reset_hp()

	Heals a creature to max and removes any temp HP.

	
property resistances

	The resistances, immunities, and vulnerabilities of the creature.

	Return type

	AliasResistances

	
save(ability: str [https://docs.python.org/3/library/stdtypes.html#str], adv: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][bool [https://docs.python.org/3/library/functions.html#bool]] = None)

	Rolls a combatant’s saving throw.

	Parameters

	
	ability (str [https://docs.python.org/3/library/stdtypes.html#str]) – The type of save (“str”, “dexterity”, etc).

	adv (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether to roll the save with advantage. Rolls with advantage if True, disadvantage if False, or normally if None.

	Returns

	A SimpleRollResult describing the rolled save.

	Return type

	SimpleRollResult

	
property saves

	The saves of the creature.

	Return type

	AliasSaves

	
set_ac(ac: int [https://docs.python.org/3/library/functions.html#int])

	Sets the combatant’s armor class.

	Parameters

	ac (int [https://docs.python.org/3/library/functions.html#int]) – The new AC.

	
set_group(group)

	Sets the combatant’s group

	Parameters

	group (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the group. None to remove from group.

	Returns

	The combatant’s new group, or None if the combatant was removed from a group.

	Return type

	SimpleGroup or None

	
set_hp(new_hp)

	Sets the creature’s remaining HP.

	Parameters

	new_hp (int [https://docs.python.org/3/library/functions.html#int]) – The amount of remaining HP (a nonnegative integer).

	
set_init(init: int [https://docs.python.org/3/library/functions.html#int])

	Sets the combatant’s initiative roll.

	Parameters

	init (int [https://docs.python.org/3/library/functions.html#int]) – The new initiative.

	
set_maxhp(maxhp: int [https://docs.python.org/3/library/functions.html#int])

	Sets the combatant’s max HP.

	Parameters

	maxhp (int [https://docs.python.org/3/library/functions.html#int]) – The new max HP.

	
set_name(name: str [https://docs.python.org/3/library/stdtypes.html#str])

	Sets the combatant’s name.

	Parameters

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The new name.

	
set_note(note: str [https://docs.python.org/3/library/stdtypes.html#str])

	Sets the combatant’s note.

	Parameters

	note (str [https://docs.python.org/3/library/stdtypes.html#str]) – The new note.

	
set_temp_hp(new_temp)

	Sets a creature’s temp HP.

	Parameters

	new_temp (int [https://docs.python.org/3/library/functions.html#int]) – The new temp HP (a non-negative integer).

	
property skills

	The skills of the creature.

	Return type

	AliasSkills

	
property spellbook

	The creature’s spellcasting information.

	Return type

	AliasSpellbook

	
property stats

	The stats of the creature.

	Return type

	AliasBaseStats

	
property temp_hp

	The current temp HP of the creature.

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

SimpleGroup

	
class SimpleGroup

	
	
combatants

	A list of all SimpleCombatant in this group.

	Type

	list of SimpleCombatant

	
type

	The type of the object ("group"), to determine whether this is a group or not.

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
init

	What the group rolled for initiative.

	Type

	int [https://docs.python.org/3/library/functions.html#int]

	
get_combatant(name, strict=None)

	Gets a SimpleCombatant from the group.

	param str name

	The name of the combatant to get.

	param strict

	Whether combatant name must be a full case insensitive match.
If this is None (default), attempts a strict match with fallback to partial match.
If this is False, it returns the first partial match.
If this is True, it will only return a strict match.

	return

	The combatant or None.

	rtype

	SimpleCombatant

	
property id

	The group’s unique identifier.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
property name

	The name of the group.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
set_init(init: int [https://docs.python.org/3/library/functions.html#int])

	Sets the group’s initiative roll.

	Parameters

	init (int [https://docs.python.org/3/library/functions.html#int]) – The new initiative.

SimpleEffect

	
class SimpleEffect

	
	
combatant_name

	The name of the combatant this effect is on.

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
conc

	Whether the effect requires concentration.

	Type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
desc

	The description of the effect.

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
duration

	The initial duration of the effect, in rounds. None if the effect has indefinite duration.

	Type

	int [https://docs.python.org/3/library/functions.html#int] or None

	
effect

	The applied passive effects of the object:

{
 attack_advantage: int
 to_hit_bonus: str
 damage_bonus: str
 magical_damage: bool
 silvered_damage: bool
 resistances: List[Resistance]
 immunities: List[Resistance]
 vulnerabilities: List[Resistance]
 ignored_resistances: List[Resistance]
 ac_value: int
 ac_bonus: int
 max_hp_value: int
 max_hp_bonus: int
 save_bonus: str
 save_adv: List[str]
 save_dis: List[str]
 check_bonus: str
}

Each attribute in the dictionary is optional and may not be present.

	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
name

	The name of the effect.

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
remaining

	The remaining duration of the effect, in rounds. None if the effect has indefinite duration.

	Type

	int [https://docs.python.org/3/library/functions.html#int] or None

	
ticks_on_end

	Whether the effect duration ticks at the end of the combatant’s turn or at the start.

	Type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
attacks

	A list of the attacks granted by the effect.

	Type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
buttons

	A list of the buttons granted by the effect.

	Type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
property children

	Gets the child effects of this effect.

	Return type

	list of SimpleEffect

	
property parent

	Gets the parent effect of this effect, or None if this effect has no parent.

	Return type

	SimpleEffect or None

	
set_parent(parent)

	Sets the parent effect of this effect.

	Parameters

	parent (SimpleEffect) – The parent.

Initiative Effect Args

The passive_effects, attacks, and buttons arguments to SimpleCombatant.add_effect() should be a dict/list that
follows the schema below, respectively.

Some examples are provided below.

class PassiveEffects:
 attack_advantage: Optional[enums.AdvantageType]
 to_hit_bonus: Optional[str255]
 damage_bonus: Optional[str255]
 magical_damage: Optional[bool]
 silvered_damage: Optional[bool]
 resistances: Optional[List[str255]]
 immunities: Optional[List[str255]]
 vulnerabilities: Optional[List[str255]]
 ignored_resistances: Optional[List[str255]]
 ac_value: Optional[int]
 ac_bonus: Optional[int]
 max_hp_value: Optional[int]
 max_hp_bonus: Optional[int]
 save_bonus: Optional[str255]
 save_adv: Optional[Set[str]]
 save_dis: Optional[Set[str]]
 check_bonus: Optional[str255]
 check_adv: Optional[Set[str]]
 check_dis: Optional[Set[str]]

class AttackInteraction:
 attack: AttackModel # this can be any attack built on the Avrae Dashboard
 override_default_dc: Optional[int]
 override_default_attack_bonus: Optional[int]
 override_default_casting_mod: Optional[int]

class ButtonInteraction:
 automation: Automation # this can be any automation built on the Avrae Dashboard
 label: str
 verb: Optional[str255]
 style: Optional[conint(ge=1, le=4)]
 override_default_dc: Optional[int]
 override_default_attack_bonus: Optional[int]
 override_default_casting_mod: Optional[int]

Example: Passive Effects

Also see PassiveEffects for more information.

combatant.add_effect(
 "Some Magical Effect",
 passive_effects={
 "attack_advantage": 1,
 "damage_bonus": "1d4 [fire]",
 "magical_damage": True,
 "resistances": ["fire", "nonmagical slashing"],
 "ac_bonus": 2,
 "save_adv": ["dexterity"]
 }
)

Example: Granting Attacks

Also see AttackInteraction for more information. Note that the Automation schema differs slightly from the
aliasing API.

combatant.add_effect(
 "Some Magical Effect",
 attacks=[{
 "attack": {
 "_v": 2,
 "name": "Magical Attack",
 "verb": "shows off the power of",
 "automation": [
 {
 "type": "target",
 "target": "each",
 "effects": [
 {
 "type": "attack",
 "hit": [
 {
 "type": "damage",
 "damage": "1d10[fire]"
 }
],
 "miss": []
 }
]
 }
]
 }
 }]
)

Example: Granting Buttons

Also see ButtonInteraction for more information. Note that the Automation schema differs slightly from the
aliasing API.

combatant.add_effect(
 "Some Magical Effect",
 buttons=[{
 "label": "On Fire",
 "verb": "is burning",
 "style": 4,
 "automation": [
 {
 "type": "target",
 "target": "self",
 "effects": [
 {
 "type": "damage",
 "damage": "1d6 [fire]"
 }
]
 }
]
 }]
)

SimpleRollResult

	
class SimpleRollResult

	
	
dice

	The rolled dice (e.g. 1d20 (5)).

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
total

	The total of the roll.

	Type

	int [https://docs.python.org/3/library/functions.html#int]

	
full

	The string representing the roll.

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
result

	The RollResult object returned by the roll.

	Type

	d20.RollResult [https://d20.readthedocs.io/en/latest/api.html#d20.RollResult]

	
raw

	The Expression object returned by the roll. Equivalent to SimpleRollResult.result.expr.

	Type

	d20.Expression [https://d20.readthedocs.io/en/latest/expression.html#d20.Expression]

	
consolidated()

	Gets the most simplified version of the roll string. Consolidates totals and damage types together.

Note that this modifies the result expression in place!

>>> result = vroll("3d6[fire]+1d4[cold]")
>>> str(result)
'3d6 (3, 3, 2) [fire] + 1d4 (2) [cold] = `10`'
>>> result.consolidated()
'8 [fire] + 2 [cold]'

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
__str__()

	Equivalent to result.full.

ParsedArguments

	
class ParsedArguments

	
	
add_context(context, args)

	Adds contextual parsed arguments (arguments that only apply in a given context)

	Parameters

	
	context – The context to add arguments to.

	args (ParsedArguments, or dict[str, list[str]]) – The arguments to add.

	
adv(eadv=False, boolwise=False, ephem=False, custom: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][dict [https://docs.python.org/3/library/stdtypes.html#dict]] = None)

	Determines whether to roll with advantage, disadvantage, Elven Accuracy, or no special effect.

	Parameters

	
	eadv – Whether to parse for elven accuracy.

	boolwise – Whether to return an integer or tribool representation.

	ephem – Whether to return an ephemeral argument if such exists.

	custom – Dictionary of custom values to parse for. There should be a key for each value you want to
overwrite. custom={'adv': 'custom_adv'} would allow you to parse for advantage if the
custom_adv argument is found.

	Returns

	-1 for dis, 0 for normal, 1 for adv, 2 for eadv

	
get(arg, default=None, type_=<class 'str'>, ephem=False)

	Gets a list of all values of an argument.

	Parameters

	
	arg (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the arg to get.

	default – The default value to return if the arg is not found. Not cast to type.

	type_ (type [https://docs.python.org/3/library/functions.html#type]) – The type that each value in the list should be returned as.

	ephem (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether to add applicable ephemeral arguments to the returned list.

	Returns

	The relevant argument list.

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
ignore(arg)

	Removes any instances of an argument from the result in all contexts (ephemeral included).

	Parameters

	arg – The argument to ignore.

	
join(arg, connector: str [https://docs.python.org/3/library/stdtypes.html#str], default=None, ephem=False)

	Returns a str formed from all of one arg, joined by a connector.

	Parameters

	
	arg – The arg to join.

	connector – What to join the arg by.

	default – What to return if the arg does not exist.

	ephem – Whether to return an ephemeral argument if such exists.

	Returns

	The joined str, or default.

	
last(arg, default=None, type_=<class 'str'>, ephem=False)

	Gets the last value of an arg.

	Parameters

	
	arg (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the arg to get.

	default – The default value to return if the arg is not found. Not cast to type.

	type_ (type [https://docs.python.org/3/library/functions.html#type]) – The type that the arg should be returned as.

	ephem (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether to return an ephemeral argument if such exists.

	Raises

	InvalidArgument if the arg cannot be cast to the type

	Returns

	The relevant argument.

	
set_context(context)

	Sets the current argument parsing context.

	Parameters

	context – Any hashable context.

	
update(new)

	Updates the arguments in this argument list from a dict.

	Parameters

	new (dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]] or dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]]]) – The new values for each argument.

	
update_nx(new)

	Like .update(), but only fills in arguments that were not already parsed. Ignores the argument if the
value is None.

	Parameters

	new (dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]] or dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]]] or dict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], None]) – The new values for each argument.

Context Models

AliasContext

	
class AliasContext

	Used to expose some information about the context, like the guild name, channel name, author name, and
current prefix to alias authors.

You can access this in an alias by using the ctx local.

	
property alias

	The name the alias was invoked with.
Note: When used in a base command, this will return the deepest sub-command, but when used in an alias it will
return the base command.

>>> !test {{ctx.alias}}
'test'

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
property author

	The user that ran the alias.

	Return type

	AliasAuthor

	
property channel

	The channel the alias was run in.

	Return type

	AliasChannel

	
property guild

	The discord guild (server) the alias was run in, or None if the alias was run in DMs.

	Return type

	AliasGuild or None

	
property message_id

	The ID of the message the alias was invoked with.

>>> !test {{ctx.message_id}}
982495360129847306

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	
property prefix

	The prefix used to run the alias.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

AliasGuild

	
class AliasGuild

	Represents the Discord guild (server) an alias was invoked in.

	
property id

	The ID of the guild.

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	
property name

	The name of the guild.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

AliasChannel

	
class AliasChannel

	Represents the Discord channel an alias was invoked in.

	
property category

	The category of the channel the alias was run in

	Return type

	AliasCategory or None

	
property id

	The ID of the channel.

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	
property name

	The name of the channel, not including the preceding hash (#).

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
property parent

	If this channel is a thread, the thread’s parent channel, or None otherwise.

	Return type

	AliasChannel or None

	
property topic

	The channel topic. This will be None if the channel is a direct message or thread.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str] or None

AliasCategory

	
class AliasCategory

	Represents the category of the Discord channel an alias was invoked in.

	
property id

	The ID of the category.

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	
property name

	The name of the category

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

AliasAuthor

	
class AliasAuthor

	Represents the Discord user who invoked an alias.

	
property discriminator

	The user’s discriminator (number after the hash).

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
property display_name

	The user’s display name - nickname if applicable, otherwise same as their name.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
property id

	The user’s ID.

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	
property name

	The user’s username (not including the discriminator).

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

AliasCharacter

	
class AliasCharacter(AliasStatBlock)

	
	
property ac

	The armor class of the creature.

	Return type

	int [https://docs.python.org/3/library/functions.html#int] or None

	
property actions

	The character’s actions. These do not include attacks - see the attacks property.

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list][AliasAction]

	
property attacks

	The attacks of the creature.

	Return type

	AliasAttackList

	
property background

	Gets the character’s background.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str] or None

	
cc(name)

	Gets the AliasCustomCounter with the name name

	Parameters

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the custom counter to get.

	Returns

	The custom counter.

	Return type

	AliasCustomCounter

	Raises

	ConsumableException if the counter does not exist.

	
cc_exists(name)

	Returns whether a custom counter exists.

	Parameters

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the custom counter to check.

	Returns

	Whether the counter exists.

	
cc_str(name)

	Returns a string representing a custom counter.

	Parameters

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the custom counter to get.

	Returns

	A string representing the current value, maximum, and minimum of the counter.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	Raises

	ConsumableException if the counter does not exist.

Example:

>>> cc_str("Ki")
'11/17'
>>> cc_str("Bardic Inspiration")
'◉◉◉〇〇'

	
property coinpurse

	The coinpurse of the character.

	Return type

	AliasCoinpurse

	
property consumables

	Returns a list of custom counters on the character.

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list][AliasCustomCounter]

	
create_cc(name: str [https://docs.python.org/3/library/stdtypes.html#str], *args, **kwargs)

	Creates a custom counter. If a counter with the same name already exists, it will replace it.

	Parameters

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the counter to create.

	minVal (str [https://docs.python.org/3/library/stdtypes.html#str]) – The minimum value of the counter. Supports Cvar Table parsing.

	maxVal (str [https://docs.python.org/3/library/stdtypes.html#str]) – The maximum value of the counter. Supports Cvar Table parsing.

	reset (str [https://docs.python.org/3/library/stdtypes.html#str]) – One of 'short', 'long', 'hp', 'none', or None.

	dispType (str [https://docs.python.org/3/library/stdtypes.html#str]) – Either None, 'bubble', 'square', 'hex', or 'star'.

	reset_to (str [https://docs.python.org/3/library/stdtypes.html#str]) – The value the counter should reset to. Supports Cvar Table parsing.

	reset_by (str [https://docs.python.org/3/library/stdtypes.html#str]) – How much the counter should change by on a reset. Supports dice but not cvars.

	title (str [https://docs.python.org/3/library/stdtypes.html#str]) – The title of the counter.

	desc (str [https://docs.python.org/3/library/stdtypes.html#str]) – The description of the counter.

	initial_value (str [https://docs.python.org/3/library/stdtypes.html#str]) – The initial value of the counter.

	Return type

	AliasCustomCounter

	Returns

	The newly created counter.

	
create_cc_nx(name: str [https://docs.python.org/3/library/stdtypes.html#str], minVal: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]] = None, maxVal: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]] = None, reset: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]] = None, dispType: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]] = None, reset_to: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]] = None, reset_by: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]] = None, title: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]] = None, desc: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]] = None, initial_value: Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]] = None)

	Creates a custom counter if one with the given name does not already exist.
Equivalent to:

>>> if not cc_exists(name):
>>> create_cc(name, minVal, maxVal, reset, dispType, reset_to, reset_by, title, desc)

	
property creature_type

	The creature type of the creature. Will return None for players or creatures with no creature type.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str] or None

	
property csettings

	Gets a copy of the character’s settings dict.

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
property cvars

	Returns a dict of cvars bound on this character.

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
property death_saves

	Returns the character’s death saves.

	Return type

	AliasDeathSaves

	
delete_cc(name)

	Deletes a custom counter.

	Parameters

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the custom counter to delete.

	Raises

	ConsumableException if the counter does not exist.

	
delete_cvar(name)

	Deletes a custom character variable. Does nothing if the cvar does not exist.

Note

This method does not unbind the name in the current runtime.

	Parameters

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the variable to delete.

	
property description

	The description of the character.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str] or None

	
edit_cc(name: str, minVal: str = <object object>, maxVal: str = <object object>, reset: str = <object object>, dispType: str = <object object>, reset_to: str = <object object>, reset_by: str = <object object>, title: str = <object object>, desc: str = <object object>, new_name: ~typing.Optional[str] = None)

	Edits an existing custom counter.

Pass None to remove an argument entirely.
Will clamp counter value to new limits if needed.

	Parameters

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the counter to edit.

	minVal (str [https://docs.python.org/3/library/stdtypes.html#str]) – The minimum value of the counter. Supports Cvar Table parsing.

	maxVal (str [https://docs.python.org/3/library/stdtypes.html#str]) – The maximum value of the counter. Supports Cvar Table parsing.

	reset (str [https://docs.python.org/3/library/stdtypes.html#str]) – One of 'short', 'long', 'hp', 'none', or None.

	dispType (str [https://docs.python.org/3/library/stdtypes.html#str]) – Either None, 'bubble', 'square', 'hex', or 'star'.

	reset_to (str [https://docs.python.org/3/library/stdtypes.html#str]) – The value the counter should reset to. Supports Cvar Table parsing.

	reset_by (str [https://docs.python.org/3/library/stdtypes.html#str]) – How much the counter should change by on a reset. Supports dice but not cvars.

	title (str [https://docs.python.org/3/library/stdtypes.html#str]) – The title of the counter.

	desc (str [https://docs.python.org/3/library/stdtypes.html#str]) – The description of the counter.

	new_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The new name of the counter.

	Return type

	AliasCustomCounter

	Raises

	ConsumableException if the counter does not exist.

	Returns

	The edited counter

	
get_cc(name)

	Gets the value of a custom counter.

	Parameters

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the custom counter to get.

	Returns

	The current value of the counter.

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	Raises

	ConsumableException if the counter does not exist.

	
get_cc_max(name)

	Gets the maximum value of a custom counter.

	Parameters

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the custom counter maximum to get.

	Returns

	The maximum value of the counter. If a counter has no maximum, it will return INT_MAX (2^31-1).

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	Raises

	ConsumableException if the counter does not exist.

	
get_cc_min(name)

	Gets the minimum value of a custom counter.

	Parameters

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the custom counter minimum to get.

	Returns

	The minimum value of the counter. If a counter has no minimum, it will return INT_MIN (-2^31).

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	Raises

	ConsumableException if the counter does not exist.

	
get_cvar(name, default=None)

	Retrieves and returns the value of a cvar (character variable).

	Parameters

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the cvar.

	default – What to return if the name is not set.

	Returns

	The value of the cvar, or the default value if it does not exist.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str] or None

	
property hp

	The current HP of the creature.

	Return type

	int [https://docs.python.org/3/library/functions.html#int] or None

	
hp_str()

	Returns a string describing the creature’s current, max, and temp HP.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
property image

	The image url for the character.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
property levels

	The levels of the creature.

	Return type

	AliasLevels

	
property max_hp

	The maximum HP of the creature.

	Return type

	int [https://docs.python.org/3/library/functions.html#int] or None

	
mod_cc(name, val: int [https://docs.python.org/3/library/functions.html#int], strict=False)

	Modifies the value of a custom counter. Equivalent to set_cc(name, get_cc(name) + value, strict).

	
modify_hp(amount, ignore_temp=False, overflow=True)

	Modifies the creature’s remaining HP by a given amount.

	Parameters

	
	amount (int [https://docs.python.org/3/library/functions.html#int]) – The amount of HP to add/remove.

	ignore_temp (bool [https://docs.python.org/3/library/functions.html#bool]) – If amount is negative, whether to damage temp HP first or ignore temp.

	overflow (bool [https://docs.python.org/3/library/functions.html#bool]) – If amount is positive, whether to allow overhealing or cap at the creature’s max HP.

	Returns

	A string describing the creature’s current, max, and temp HP after the change.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
property name

	The name of the creature.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
property owner

	Returns the id of this character’s owner.

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	
property race

	Gets the character’s race.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str] or None

	
reset_hp()

	Heals a creature to max and removes any temp HP.

	
property resistances

	The resistances, immunities, and vulnerabilities of the creature.

	Return type

	AliasResistances

	
property saves

	The saves of the creature.

	Return type

	AliasSaves

	
set_cc(name, value: int [https://docs.python.org/3/library/functions.html#int], strict=False)

	Sets the value of a custom counter.

	Parameters

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the custom counter to set.

	value (int [https://docs.python.org/3/library/functions.html#int]) – The value to set the counter to.

	strict (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, will raise a CounterOutOfBounds if the new value is out of bounds,
otherwise silently clips to bounds.

	Raises

	ConsumableException if the counter does not exist.

	Returns

	The cc’s new value.

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	
set_cvar(name, val: str [https://docs.python.org/3/library/stdtypes.html#str])

	Sets a custom character variable, which will be available in all scripting contexts using this character.
Binds the value to the given name in the current runtime.

	Parameters

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the variable to set. Must be a valid identifier and not be in the Cvar Table.

	val (str [https://docs.python.org/3/library/stdtypes.html#str]) – The value to set it to.

	
set_cvar_nx(name, val: str [https://docs.python.org/3/library/stdtypes.html#str])

	Sets a custom character variable if it is not already set.

	Parameters

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the variable to set. Must be a valid identifier and not be in the Cvar Table.

	val (str [https://docs.python.org/3/library/stdtypes.html#str]) – The value to set it to.

	
set_hp(new_hp)

	Sets the creature’s remaining HP.

	Parameters

	new_hp (int [https://docs.python.org/3/library/functions.html#int]) – The amount of remaining HP (a nonnegative integer).

	
set_temp_hp(new_temp)

	Sets a creature’s temp HP.

	Parameters

	new_temp (int [https://docs.python.org/3/library/functions.html#int]) – The new temp HP (a non-negative integer).

	
property sheet_type

	Returns the sheet type of this character (beyond, dicecloud, dicecloudv2, google).

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
property skills

	The skills of the creature.

	Return type

	AliasSkills

	
property spellbook

	The creature’s spellcasting information.

	Return type

	AliasSpellbook

	
property stats

	The stats of the creature.

	Return type

	AliasBaseStats

	
property temp_hp

	The current temp HP of the creature.

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	
property upstream

	Returns the upstream key for this character.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

AliasCustomCounter

	
class AliasCustomCounter

	
	
property desc

	Returns the cc’s description.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str] or None

	
property display_type

	Returns the cc’s display type. (None, ‘bubble’, ‘square’, ‘hex’, or ‘star’)

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
full_str(include_name: bool [https://docs.python.org/3/library/functions.html#bool] = False)

	Returns a string representing the full custom counter.

	Parameters

	include_name (bool [https://docs.python.org/3/library/functions.html#bool]) – If the name of the counter should be included. Defaults to False.

	Returns

	A string representing all components of the counter.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

Example:

>>> full_str()
"◉◉◉◉\n"
"**Resets On**: Long Rest"
>>> full_str(True)
"**Bardic Inspiration**\n"
"◉◉◉◉\n"
"**Resets On**: Long Rest"

	
property max

	Returns the maximum value of the cc, or 2^31-1 if the cc has no max.

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	
property min

	Returns the minimum value of the cc, or -2^31 if the cc has no min.

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	
mod(value, strict=False)

	Modifies the value of the custom counter.

	Parameters

	
	value (int [https://docs.python.org/3/library/functions.html#int]) – The value to modify the custom counter by.

	strict (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether to error when going out of bounds (true) or to clip silently (false).

	Returns

	The cc’s new value.

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	
property name

	Returns the cc’s name.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
reset()

	Resets the cc to its reset value. Errors if the cc has no reset value or no reset.

The reset value is calculated in 3 steps:
- if the cc has a reset_to value, it is reset to that
- else if the cc has a reset_by value, it is modified by that much
- else the reset value is its max

	Return CustomCounterResetResult

	(new_value: int, old_value: int, target_value: int, delta: str)

	
property reset_by

	Returns the amount the cc changes by on a reset, if it was created with an explicit resetby.

	Returns

	The amount the cc changes by. Guaranteed to be a rollable string.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str] or None

	
property reset_on

	Returns the condition on which the cc resets. (‘long’, ‘short’, ‘none’, None)

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str] or None

	
property reset_to

	Returns the value the cc resets to, if it was created with an explicit resetto.

	Return type

	int [https://docs.python.org/3/library/functions.html#int] or None

	
set(new_value, strict=False)

	Sets the cc’s value to a new value.

	Parameters

	
	new_value (int [https://docs.python.org/3/library/functions.html#int]) – The new value to set.

	strict (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether to error when going out of bounds (true) or to clip silently (false).

	Returns

	The cc’s new value.

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	
property title

	Returns the cc’s title.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str] or None

	
property value

	Returns the current value of the cc.

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

AliasDeathSaves

	
class AliasDeathSaves

	
	
fail(num=1)

	Adds one or more failed death saves.

	Parameters

	num (int [https://docs.python.org/3/library/functions.html#int]) – The number of failed death saves to add.

	
property fails

	Returns the number of failed death saves.

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	
is_dead()

	Returns whether or not the character is dead.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
is_stable()

	Returns whether or not the character is stable.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
reset()

	Resets all death saves.

	
succeed(num=1)

	Adds one or more successful death saves.

	Parameters

	num (int [https://docs.python.org/3/library/functions.html#int]) – The number of successful death saves to add.

	
property successes

	Returns the number of successful death saves.

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

AliasAction

	
class AliasAction

	An action.

	
property activation_type

	The activation type of the action (e.g. action, bonus, etc).

	Action Type

	Value

	Action

	1

	No Action

	2

	Bonus Action

	3

	Reaction

	4

	Minute

	6

	Hour

	7

	Special

	8

	Legendary Action

	9

	Mythic Action

	10

	Lair Action

	11

	Return type

	int [https://docs.python.org/3/library/functions.html#int] or None

	
property activation_type_name

	The name of the activation type of the action. Will be one of:
“ACTION”, “NO_ACTION”, “BONUS_ACTION”, “REACTION”, “MINUTE”, “HOUR”, “SPECIAL”.
This list of options may expand in the future.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
property description

	The description of the action as it appears in a non-verbose action list.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
property name

	The name of the action.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
property snippet

	The description of the action as it appears in a verbose action list.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

AliasCoinpurse

	
class AliasCoinpurse

	An object holding the coinpurse for the active character.

	
str(AliasCoinpurse)

	Returns a string representation of the entire coinpurse. If the character setting for Compact Coins is enabled, this will only return your float gold, otherwise will return all 5 coin types.

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
pp

	
gp

	
ep

	
sp

	
cp

	The value of the given coin type.

	Type

	int [https://docs.python.org/3/library/functions.html#int]

	
AliasCoinpurse[cointype]

	Gets the value of the given coin type.

	Type

	int [https://docs.python.org/3/library/functions.html#int]

	
autoconvert()

	Converts all of your coins into the highest value coins possible.
100cp turns into 1gp, 5sp turns into 1ep, etc.

	
coin_str(cointype: str [https://docs.python.org/3/library/stdtypes.html#str]) → str [https://docs.python.org/3/library/stdtypes.html#str]

	Returns a string representation of the chosen coin type.

	Parameters

	cointype (str [https://docs.python.org/3/library/stdtypes.html#str]) – The type of coin to return. "pp", "gp", "ep", "sp", and "cp"

	Returns

	The string representation of the chosen coin type.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
compact_str() → str [https://docs.python.org/3/library/stdtypes.html#str]

	Returns a string representation of the compacted coin value.

	Returns

	The string representation of the compacted coin value.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
get_coins() → dict [https://docs.python.org/3/library/stdtypes.html#dict]

	Returns a dict of your current coinpurse.

	Returns

	A dict of your current coinpurse, e.g. {"pp":0, "gp":1, "ep":0, "sp":2, "cp":3, "total": 1.23}

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
modify_coins(pp: int [https://docs.python.org/3/library/functions.html#int] = 0, gp: int [https://docs.python.org/3/library/functions.html#int] = 0, ep: int [https://docs.python.org/3/library/functions.html#int] = 0, sp: int [https://docs.python.org/3/library/functions.html#int] = 0, cp: int [https://docs.python.org/3/library/functions.html#int] = 0, autoconvert: bool [https://docs.python.org/3/library/functions.html#bool] = True)

	Modifies your coinpurse based on the provided values. If autoconvert is enabled, it will convert down higher
value coins if necessary to handle the transaction. Returns a dict representation of the deltas.

	Parameters

	
	pp (int [https://docs.python.org/3/library/functions.html#int]) – Platinum Pieces. Defaults to 0.

	gp (int [https://docs.python.org/3/library/functions.html#int]) – Gold Pieces. Defaults to 0.

	ep (int [https://docs.python.org/3/library/functions.html#int]) – Electrum Pieces. Defaults to 0.

	sp (int [https://docs.python.org/3/library/functions.html#int]) – Silver Pieces. Defaults to 0.

	cp (int [https://docs.python.org/3/library/functions.html#int]) – Copper Pieces. Defaults to 0.

	autoconvert (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether it should attempt to convert down higher value coins. Defaults to True

	Returns

	A dict representation of the delta changes for each coin type.

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
set_coins(pp: int [https://docs.python.org/3/library/functions.html#int], gp: int [https://docs.python.org/3/library/functions.html#int], ep: int [https://docs.python.org/3/library/functions.html#int], sp: int [https://docs.python.org/3/library/functions.html#int], cp: int [https://docs.python.org/3/library/functions.html#int])

	Sets your coinpurse to the provided values.

	Parameters

	
	pp (int [https://docs.python.org/3/library/functions.html#int]) – Platinum Pieces

	gp (int [https://docs.python.org/3/library/functions.html#int]) – Gold Pieces

	ep (int [https://docs.python.org/3/library/functions.html#int]) – Electrum Pieces

	sp (int [https://docs.python.org/3/library/functions.html#int]) – Silver Pieces

	cp (int [https://docs.python.org/3/library/functions.html#int]) – Copper Pieces

	
property total: float [https://docs.python.org/3/library/functions.html#float]

	Returns the total amount of coins in your bag, converted to float gold.

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

StatBlock Models

AliasStatBlock

	
class AliasStatBlock

	A base class representing any creature (player or otherwise) that has stats.

Generally, these are never directly used - notable subclasses are SimpleCombatant
and AliasCharacter.

	
property ac

	The armor class of the creature.

	Return type

	int [https://docs.python.org/3/library/functions.html#int] or None

	
property attacks

	The attacks of the creature.

	Return type

	AliasAttackList

	
property creature_type

	The creature type of the creature. Will return None for players or creatures with no creature type.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str] or None

	
property hp

	The current HP of the creature.

	Return type

	int [https://docs.python.org/3/library/functions.html#int] or None

	
hp_str()

	Returns a string describing the creature’s current, max, and temp HP.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
property levels

	The levels of the creature.

	Return type

	AliasLevels

	
property max_hp

	The maximum HP of the creature.

	Return type

	int [https://docs.python.org/3/library/functions.html#int] or None

	
modify_hp(amount, ignore_temp=False, overflow=True)

	Modifies the creature’s remaining HP by a given amount.

	Parameters

	
	amount (int [https://docs.python.org/3/library/functions.html#int]) – The amount of HP to add/remove.

	ignore_temp (bool [https://docs.python.org/3/library/functions.html#bool]) – If amount is negative, whether to damage temp HP first or ignore temp.

	overflow (bool [https://docs.python.org/3/library/functions.html#bool]) – If amount is positive, whether to allow overhealing or cap at the creature’s max HP.

	Returns

	A string describing the creature’s current, max, and temp HP after the change.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
property name

	The name of the creature.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
reset_hp()

	Heals a creature to max and removes any temp HP.

	
property resistances

	The resistances, immunities, and vulnerabilities of the creature.

	Return type

	AliasResistances

	
property saves

	The saves of the creature.

	Return type

	AliasSaves

	
set_hp(new_hp)

	Sets the creature’s remaining HP.

	Parameters

	new_hp (int [https://docs.python.org/3/library/functions.html#int]) – The amount of remaining HP (a nonnegative integer).

	
set_temp_hp(new_temp)

	Sets a creature’s temp HP.

	Parameters

	new_temp (int [https://docs.python.org/3/library/functions.html#int]) – The new temp HP (a non-negative integer).

	
property skills

	The skills of the creature.

	Return type

	AliasSkills

	
property spellbook

	The creature’s spellcasting information.

	Return type

	AliasSpellbook

	
property stats

	The stats of the creature.

	Return type

	AliasBaseStats

	
property temp_hp

	The current temp HP of the creature.

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

AliasBaseStats

	
class AliasBaseStats

	Represents a statblock’s 6 base ability scores and proficiency bonus.

	
property charisma

	Charisma score.

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	
property constitution

	Constitution score.

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	
property dexterity

	Dexterity score.

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	
get(stat)

	Get the integer value of a stat (case sensitive, lowercase. strength, dexterity, etc).

	Parameters

	stat (str [https://docs.python.org/3/library/stdtypes.html#str]) – The stat to look up

	Returns

	The integer value of the stat.

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	
get_mod(stat: str [https://docs.python.org/3/library/stdtypes.html#str])

	Gets the modifier for a base stat (str, dex, con, etc). Does not take skill check bonuses into account.

For the skill check modifier, use StatBlock.skills.strength etc.

	Parameters

	stat (str [https://docs.python.org/3/library/stdtypes.html#str]) – The stat to get the modifier for.

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	
property intelligence

	Intelligence score.

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	
property prof_bonus

	The proficiency bonus.

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	
property strength

	Strength score.

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	
property wisdom

	Wisdom score.

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

AliasLevels

	
class AliasLevels

	Represents a statblock’s class levels.

	
for (cls, level) in AliasLevels:

	Iterates over pairs of class names and the number of levels in that class.

	Type

	Iterable[tuple [https://docs.python.org/3/library/stdtypes.html#tuple][str [https://docs.python.org/3/library/stdtypes.html#str], int [https://docs.python.org/3/library/functions.html#int]]]

	
get(cls_name, default=0)

	Gets the levels in a given class, or default if there are none.

	Parameters

	
	cls_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the class to get the levels of.

	default (int [https://docs.python.org/3/library/functions.html#int]) – What to return if the statblock does not have levels in the given class.

	Return type

	float [https://docs.python.org/3/library/functions.html#float] or int [https://docs.python.org/3/library/functions.html#int]

	
property total_level

	The total level.

	Return type

	float [https://docs.python.org/3/library/functions.html#float] or int [https://docs.python.org/3/library/functions.html#int]

AliasAttackList

	
class AliasAttackList

	A container of a statblock’s attacks.

	
str(AliasAttackList)

	Returns a string representation of all attacks in this attack list.

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
len(AliasAttackList)

	Returns the number of attacks in this attack list.

	Type

	int [https://docs.python.org/3/library/functions.html#int]

	
for attack in AliasAttackList:

	Iterates over attacks in this attack list.

	Type

	Iterable[AliasAttack]

	
AliasAttackList[i]

	Gets the i-th indexed attack.

	Type

	AliasAttack

AliasAttack

	
class AliasAttack

	An attack.

	
str(AliasAttack)

	Returns a string representation of this attack.

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
property activation_type

	The activation type of the action (e.g. action, bonus, etc).

	Action Type

	Value

	Action

	1

	No Action

	2

	Bonus Action

	3

	Reaction

	4

	Minute

	6

	Hour

	7

	Special

	8

	Legendary Action

	9

	Mythic Action

	10

	Lair Action

	11

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	
property name

	The name of the attack.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
property proper

	Whether or not this attack is a proper noun.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
property raw

	A dict representing the raw value of this attack.

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
property verb

	The custom verb used for this attack, if applicable.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str] or None

AliasSkill

	
class AliasSkill

	A skill modifier.

	
property adv

	The guaranteed advantage or disadvantage on this skill modifier. True = adv, False = dis, None = normal.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool] or None

	
property bonus

	The miscellaneous bonus to the skill modifier.

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	
d20(base_adv=None, reroll=None, min_val=None, mod_override=None)

	Gets a dice string representing the roll for this skill.

	Parameters

	
	base_adv (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether this roll should be made at adv (True), dis (False), or normally (None).

	reroll (int [https://docs.python.org/3/library/functions.html#int]) – If the roll lands on this number, reroll it once (Halfling Luck).

	min_val (int [https://docs.python.org/3/library/functions.html#int]) – The minimum value of the dice roll (Reliable Talent, Glibness).

	mod_override (int [https://docs.python.org/3/library/functions.html#int]) – Overrides the skill modifier.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
property prof

	The proficiency multiplier in this skill. 0 = no proficiency, 0.5 = JoAT, 1 = proficiency, 2 = expertise.

	Return type

	float [https://docs.python.org/3/library/functions.html#float] or int [https://docs.python.org/3/library/functions.html#int]

	
property value

	The final modifier. Generally, value = (base stat mod) + (profBonus) * prof + bonus.

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

AliasSkills

	
class AliasSkills

	An object holding the skill modifiers for all skills.

	
for (skill_name, skill) in AliasSkills:

	Iterates over pairs of skill names and corresponding skills.

	Type

	Iterable[tuple[str, AliasSkill]]

	
acrobatics

	
animalHandling

	
arcana

	
athletics

	
deception

	
history

	
initiative

	
insight

	
intimidation

	
investigation

	
medicine

	
nature

	
perception

	
performance

	
persuasion

	
religion

	
sleightOfHand

	
stealth

	
survival

	
strength

	
dexterity

	
constitution

	
intelligence

	
wisdom

	
charisma

	The skill modifier for the given skill.

	Type

	AliasSkill

AliasSaves

	
class AliasSaves

	An objecting holding the modifiers of all saves.

	
for (save_name, skill) in AliasSaves:

	Iterates over pairs of save names and corresponding save.

	Type

	Iterable[tuple[str, AliasSkill]]

	
get(base_stat)

	Gets the save skill for a given stat (str, dex, etc).

	Parameters

	base_stat (str [https://docs.python.org/3/library/stdtypes.html#str]) – The stat to get the save for.

	Return type

	AliasSkill

AliasResistances

	
class AliasResistances

	A statblock’s resistances, immunities, vulnerabilities, and explicit neural damage types.

	
property immune

	A list of damage types that the stat block is immune to.

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list][Resistance]

	
is_immune(damage_type: str [https://docs.python.org/3/library/stdtypes.html#str]) → bool [https://docs.python.org/3/library/functions.html#bool]

	Whether or not this AliasResistances contains any immunities that apply to the given damage type string.

If the AliasResistances contains both a neutral and an immunity that applies, returns False.

	
is_neutral(damage_type: str [https://docs.python.org/3/library/stdtypes.html#str]) → bool [https://docs.python.org/3/library/functions.html#bool]

	Whether or not this AliasResistances contains any neutrals that apply to the given damage type string.

	
is_resistant(damage_type: str [https://docs.python.org/3/library/stdtypes.html#str]) → bool [https://docs.python.org/3/library/functions.html#bool]

	Whether or not this AliasResistances contains any resistances that apply to the given damage type string.

If the AliasResistances contains both a neutral and a resistance that applies, returns False.

	
is_vulnerable(damage_type: str [https://docs.python.org/3/library/stdtypes.html#str]) → bool [https://docs.python.org/3/library/functions.html#bool]

	Whether or not this AliasResistances contains any vulnerabilities that apply to the given damage type string.

If the AliasResistances contains both a neutral and a vulnerability that applies, returns False.

	
property neutral

	A list of damage types that the stat block ignores in damage calculations. (i.e. will not handle resistances/
vulnerabilities/immunities)

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list][Resistance]

	
property resist

	A list of damage types that the stat block is resistant to.

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list][Resistance]

	
property vuln

	A list of damage types that the stat block is vulnerable to.

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list][Resistance]

Resistance

	
class Resistance

	Represents a conditional resistance to a damage type.

Only applied to a type token set T if \(dtype \in T \land \lnot (unless \cap T) \land only \subset T\).

Note: transforms all damage types given to lowercase.

	
dtype

	The damage type.

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
unless

	A set of tokens that if present, this resistance will not apply.

	Type

	set [https://docs.python.org/3/library/stdtypes.html#set][str [https://docs.python.org/3/library/stdtypes.html#str]]

	
only

	A set of tokens that unless present, this resistance will not apply.

	Type

	set [https://docs.python.org/3/library/stdtypes.html#set][str [https://docs.python.org/3/library/stdtypes.html#str]]

	
applies_to(tokens)

	Note that tokens should be a set of lowercase strings.

	Parameters

	tokens (set [https://docs.python.org/3/library/stdtypes.html#set][str [https://docs.python.org/3/library/stdtypes.html#str]]) – A set of strings to test against.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
applies_to_str(dtype)

	Returns whether or not this resistance is applicable to a damage type.

	Parameters

	dtype (str [https://docs.python.org/3/library/stdtypes.html#str]) – The damage type to test.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
property is_complex

	Whether or not the resistance has some more complex conditional beyond just a dtype.

AliasSpellbook

	
class AliasSpellbook

	A statblock’s spellcasting information.

	
spell in AliasSpellbook

	Returns whether the spell named spell (str) is known.

	Type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
can_cast(spell, level)

	Returns whether or not the given spell can currently be cast at the given level.

	Parameters

	
	spell (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the spell.

	level (int [https://docs.python.org/3/library/functions.html#int]) – The level the spell is being cast at.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
cast(spell, level)

	Uses all resources to cast a given spell at a given level.

	Parameters

	
	spell (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the spell.

	level (int [https://docs.python.org/3/library/functions.html#int]) – The level the spell is being cast at.

	
property caster_level

	The caster’s caster level.

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	
property dc

	The spellcasting DC.

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	
find(spell_name: str [https://docs.python.org/3/library/stdtypes.html#str])

	Returns a list of the spells of the given name in the spellbook, case-insensitive.

	Return type

	List[AliasSpellbookSpell]

	
get_max_slots(level)

	Gets the maximum number of level level spell slots available.

	Parameters

	level (int [https://docs.python.org/3/library/functions.html#int]) – The spell level [1..9].

	Returns int

	The maximum number of spell slots, including pact slots.

	
get_slots(level)

	Gets the remaining number of slots of a given level. Always returns 1 if level is 0.

	Parameters

	level (int [https://docs.python.org/3/library/functions.html#int]) – The spell level to get the remaining slots of.

	Returns int

	The number of slots remaining, including pact slots.

	
property max_pact_slots

	The maximum number of pact slots the spellcaster has remaining. If the spellcaster has no pact slots, returns
None.

Note

Only D&D Beyond character sheets support the explicit distinction between pact and non-pact slots.

	Return type

	int [https://docs.python.org/3/library/functions.html#int] or None

	
property num_pact_slots

	The number of pact slots the spellcaster has remaining. If the spellcaster has no pact slots, returns None.

Note

Only D&D Beyond character sheets support the explicit distinction between pact and non-pact slots.

	Return type

	int [https://docs.python.org/3/library/functions.html#int] or None

	
property pact_slot_level

	The spellcaster’s pact slot level. If the spellcaster has no pact slots, returns None.

Note

Only D&D Beyond character sheets support the explicit distinction between pact and non-pact slots.

	Return type

	int [https://docs.python.org/3/library/functions.html#int] or None

	
remaining_casts_of(spell, level)

	Gets a string representing the remaining casts of a given spell at a given level.

	Parameters

	
	spell (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the spell (case-sensitive).

	level (int [https://docs.python.org/3/library/functions.html#int]) – The level the spell is being cast at.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
reset_pact_slots()

	Resets the number of remaining pact slots to the max, leaving non-pact slots untouched.

	
reset_slots()

	Resets the number of remaining spell slots of all levels to the max.

	
property sab

	The spell attack bonus.

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	
set_slots(level, value, pact=True)

	Sets the remaining number of spell slots of a given level.

	Parameters

	
	level (int [https://docs.python.org/3/library/functions.html#int]) – The spell level to set [1..9].

	value (int [https://docs.python.org/3/library/functions.html#int]) – The remaining number of slots.

	pact (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether to prefer modifying Pact Magic slots (if applicable) or normal spell slots.

	
slots_str(level)

	
	Parameters

	level (int [https://docs.python.org/3/library/functions.html#int]) – The level of spell slot to return.

	Returns str

	A string representing the caster’s remaining spell slots, including pact slots.

	
property spell_mod

	The spellcasting modifier.

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	
property spells

	The list of spells in this spellbook.

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list][AliasSpellbookSpell]

	
use_slot(level)

	Uses one spell slot of a given level. Equivalent to set_slots(level, get_slots(level) - 1).

	Parameters

	level (int [https://docs.python.org/3/library/functions.html#int]) – The level of spell slot to use.

AliasSpellbookSpell

	
class AliasSpellbookSpell

	
	
property dc

	The spell’s overridden DC. None if this spell uses the default caster DC.

	Return type

	int [https://docs.python.org/3/library/functions.html#int] or None

	
property mod

	The spell’s overridden spellcasting modifier. None if this spell uses the default caster spellcasting modifier.

	Return type

	int [https://docs.python.org/3/library/functions.html#int] or None

	
property name

	The name of the spell.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
property prepared

	Whether or not the spell is prepared. If the spell is always prepared, the caster is not a prepared caster
(e.g. Sorcerer), or the spell is a cantrip, this will be True.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
property sab

	The spell’s overridden spell attack bonus. None if this spell uses the default caster spell attack bonus.

	Return type

	int [https://docs.python.org/3/library/functions.html#int] or None

Automation Reference

This page details the structure of Avrae’s Automation system, the backbone behind custom spells and attacks.

Basic Structure

An automation run is made up of a list of effects (AKA automation node), each of which may have additional effects
that it runs under certain conditions. This recursive structure is called the automation tree.

Glossary

	
automation engine

	The Automation Engine is the code responsible for reading the automation tree and executing it against the current
game state. It handles rolling the dice, checking against your targets’ armor classes, modifying hit points, and
other game mechanics.

	
automation tree

	
automation

	The automation tree (sometimes just called “automation”) is the program that the Automation Engine runs. It’s made
up of multiple nodes that all link together to make an attack, action, spell, or more.

	
effect

	
node

	A single step of automation - usually, this is a D&D game mechanic like rolling to hit,
making a saving throw, or dealing damage, but this can also be used in more programmatic
ways to help set up other nodes.

Runtime Variables

All Automation runs provide the following variables:

	caster (AliasStatBlock) The character, combatant, or monster who is running the
automation.

	targets (list of AliasStatBlock, str, or None) A list of combatants
targeted by this automation (i.e. the -t argument).

	spell_attack_bonus (int or None) - The attack bonus for the spell, or the caster’s default attack bonus.

	spell_dc (int or None) - The DC for the spell, or the caster’s default DC.

	spell_level (int or None) - The level used to cast the spell, or None

	choice (str) - The input provided by the -choice argument, always lowercase. If the arg was not used, it will be an empty string.

Additionally, runs triggered by an initiative effect (such as automation provided in a ButtonInteraction) provide
the following variables:

	ieffect (SimpleEffect) The initiative effect responsible for providing the
automation.

Target

{
 type: "target";
 target: "all" | "each" | int | "self" | "parent" | "children";
 effects: Effect[];
 sortBy?: "hp_asc" | "hp_desc";
 self_target?: boolean;
}

A Target effect should only show up as a top-level effect.
It designates what creatures to affect.

	
class Target

	
	
target

	
	"all" or "each" (actions only): Affects each of the given (by the -t argument) targets.

	int (actions only): Affects the Nth target (1-indexed).

	"self": Affects the caster, or the actor the triggering effect is on if run from an IEffect button.

	"parent" (IEffect buttons only): If the triggering effect has a parent effect, affects the actor the
parent effect is on.

	"children" (IEffect buttons only): If the triggering effect has any children effects, affects each actor a
child effect is on.

	
effects

	A list of effects that each targeted creature will be subject to.

	
sortBy

	optional - Whether to sort the target list. If not given, targets are processed in the order the -t
arguments are seen. This does not affect self targets.

	hp_asc: Sorts the targets in order of remaining hit points ascending (lowest HP first, None last).

	hp_desc: Sorts the targets in order of remaining hit points descending (highest HP first, None last).

	
self_target

	optional - If true, the effect will be added to the caster of the automation as opposed to the target.

Variables

	target (AliasStatBlock) The current target.

	targetIteration (int) If running multiple iterations (i.e. -rr), the current iteration (1-indexed).

	targetIterations (int) The total number of iterations. Minimum 1, maximum 25.

	targetIndex (int) The index of the target in the list of targets processed by this effect
(0-indexed - first target = 0, second = 1, etc.). Self targets, nth-targets, and parent targets will always
be 0.

	targetNumber (int) Same as targetIndex, but 1-indexed (equivalent to targetIndex + 1).

Attack

{
 type: "attack";
 hit: Effect[];
 miss: Effect[];
 attackBonus?: IntExpression;
 adv?: IntExpression;
}

An Attack effect makes an attack roll against a targeted creature.
It must be inside a Target effect.

	
Attack:

	
	
hit

	A list of effects to execute on a hit.

	
miss

	A list of effects to execute on a miss.

	
attackBonus

	optional - An IntExpression that details what attack bonus to use (defaults to caster’s spell attack mod).

	
adv

	optional - An IntExpression that details whether the attack has inherent advantage or not. 0 for flat,
1 for Advantage, 2 for Elven Accuracy, -1 for Disadvantage (Default is flat).

Variables

	lastAttackDidHit (bool [https://docs.python.org/3/library/functions.html#bool]) Whether the attack hit.

	lastAttackDidCrit (bool [https://docs.python.org/3/library/functions.html#bool]) If the attack hit, whether it crit.

	lastAttackRollTotal (int) The result of the last to-hit roll (0 if no roll was made).

	lastAttackNaturalRoll (int) The natural roll of the last to-hit roll (e.g. 10 in 1d20 (10) + 5 = 15;
0 if no roll was made).

	lastAttackHadAdvantage (int) The advantage type of the last to-hit roll. 0 for flat, 1 for;
Advantage, 2 for Elven Accuracy, -1 for Disadvantage

Save

{
 type: "save";
 stat: "str" | "dex" | "con" | "int" | "wis" | "cha";
 fail: Effect[];
 success: Effect[];
 dc?: IntExpression;
 adv?: -1 | 0 | 1;
}

A Save effect forces a targeted creature to make a saving throw.
It must be inside a Target effect.

	
class Save

	
	
stat

	The type of saving throw.

	
fail

	A list of effects to execute on a failed save.

	
success

	A list of effects to execute on a successful save.

	
dc

	optional - An IntExpression that details what DC to use (defaults to caster’s spell DC).

	
adv

	optional, default 0 - Whether the saving throw should have advantage by default (-1 = disadvantage,
1 = advantage, 0 = no advantage).

Variables

	lastSaveDidPass (bool [https://docs.python.org/3/library/functions.html#bool]) Whether the target passed the save.

	lastSaveDC (int) The DC of the last save roll.

	lastSaveRollTotal (int) The result of the last save roll (0 if no roll was made).

	lastSaveNaturalRoll (int) The natural roll of the last save roll (e.g. 10 in 1d20 (10) + 5 = 15;
0 if no roll was made).

	lastSaveAbility (str) The title-case full name of the ability the save was made with (e.g.
"Strength", "Wisdom", etc).

Damage

{
 type: "damage";
 damage: AnnotatedString;
 overheal?: boolean;
 higher?: {int: string};
 cantripScale?: boolean;
 fixedValue?: boolean;
}

Deals damage to or heals a targeted creature. It must be inside a Target effect.

Note

This node can also be used to heal a target; simply use negative damage to supply healing.

	
class Damage

	
	
damage

	How much damage to deal.

	
overheal

	
New in version 1.4.1.

optional - Whether this damage should allow a target to exceed its hit point maximum.

	
higher

	optional - How much to add to the damage when a spell is cast at a certain level.

	
cantripScale

	optional - Whether this roll should scale like a cantrip.

	
fixedValue

	optional - If true, won’t add any bonuses to damage from -d arguments or damage bonus effects.

Variables

	lastDamage (int) The amount of damage dealt.

TempHP

{
 type: "temphp";
 amount: AnnotatedString;
 higher?: {int: string};
 cantripScale?: boolean;
}

Sets the target’s THP. It must be inside a Target effect.

	
class TempHP

	
	
amount

	How much temp HP the target should have.

	
higher

	optional - How much to add to the THP when a spell is cast at a certain level.

	
cantripScale

	optional - Whether this roll should scale like a cantrip.

Variables

	lastTempHp (int) The amount of temp HP granted.

IEffect

{
 type: "ieffect2";
 name: AnnotatedString;
 duration?: int | IntExpression;
 effects?: PassiveEffects;
 attacks?: AttackInteraction[];
 buttons?: ButtonInteraction[];
 end?: boolean;
 conc?: boolean;
 desc?: AnnotatedString;
 stacking?: boolean;
 save_as?: string;
 parent?: string;
 target_self?: boolean;
 tick_on_caster?: boolean;
}

Adds an InitTracker Effect to a targeted creature, if the automation target is in combat.
It must be inside a Target effect.

Note

If the targeted creature is not in combat, this will display the effects of the initiative effect but not save
it on the creature.

	
class IEffect

	
	
name

	The name of the effect to add. Annotations will show as Variable in the attack string.

	
duration

	optional, default infinite - The duration of the effect, in rounds of combat. If this is negative, creates an
effect with infinite duration.

Note

Wait, how do durations actually work?

Durations use a “tick” system, and duration is actually a measure of how many “ticks” an effect sticks
around for. By default, each effect “ticks” once at the beginning of its combatant’s turn.

By using end and tick_on_caster, you can control how the duration ticks in order to create effects
that last until the end of your next turn, end of the caster’s next turn, etc.

	
effects

	optional, default no effects - The effects to add. See PassiveEffects.

	
attacks

	optional, default no attacks - The attacks granted by this effect. See AttackInteraction.

	
buttons

	optional, default no buttons - The buttons granted by this effect. See ButtonInteraction.

	
end

	optional, default false - Whether the effect timer should tick on the end of the turn, rather than start.

	
conc

	optional, default false - Whether the effect requires concentration.

	
desc

	optional - The description of the effect (displays on combatant’s turn).

	
stacking

	optional, default false - If true and another effect with the same name is found on the target, instead of
overwriting, add a child effect with name {name} x{count} and no description, duration, concentration,
attacks, or buttons.

	
save_as

	optional, default None - If supplied, saves an IEffectMetaVar to the automation runtime, which can be
used in another IEffect’s parent key to set its parent to this effect. Must be a valid identifier.

	
parent

	optional, default None - If supplied, sets the created effect’s parent to the given effect. This must be the
name of an existing IEffectMetaVar.

If parent is supplied but the parent effect does not exist, will not set a parent.

If conc is true, the given parent effect will take priority over the concentration effect.

If stacking is true and a valid stack parent exists, the stack parent will take priority over the given
parent.

	
target_self

	optional, default false - If true, the effect will be applied to the caster of the action, rather than the
target.

	
tick_on_caster

	optional, default false - If true, the effect’s duration will be dependent on the caster of the action, rather
than the target. For example, a tick_on_caster effect with a duration of 1 will last until the start of the
caster’s next turn, rather than the target’s.

If the caster is not in combat, this has no effect.

Variables

	(supplied save_as) (IEffectMetaVar or None) A reference to the effect that was added to the target.
Use this in another IEffect’s parent key to set that IEffect’s parent to the given one.

PassiveEffects

{
 attack_advantage: IntExpression;
 to_hit_bonus: AnnotatedString;
 damage_bonus: AnnotatedString;
 magical_damage: IntExpression;
 silvered_damage: IntExpression;
 resistances: AnnotatedString[];
 immunities: AnnotatedString[];
 vulnerabilities: AnnotatedString[];
 ignored_resistances: AnnotatedString[];
 ac_value: IntExpression;
 ac_bonus: IntExpression;
 max_hp_value: IntExpression;
 max_hp_bonus: IntExpression;
 save_bonus: AnnotatedString;
 save_adv: AnnotatedString[];
 save_dis: AnnotatedString[];
 check_bonus: AnnotatedString;
 check_adv: AnnotatedString[];
 check_dis: AnnotatedString[];
 dc_bonus: IntExpression;
}

Used to specify the passive effects granted by an initiative effect.

	
class PassiveEffects

	
	
attack_advantage

	optional, default no advantage - Whether this effect gives the combatant advantage on all attacks.
-1 for dis, 1 for adv, 2 for elven accuracy.

	
to_hit_bonus

	optional - A bonus that this effect grants to all of the combatant’s to-hit rolls.

	
damage_bonus

	optional - A bonus that this effect grants to all of the combatant’s damage rolls.

	
magical_damage

	optional, default false - Whether this effect makes all of the combatant’s attacks do magical damage.
0 for false, anything else for true.

	
silvered_damage

	optional, default false - Whether this effect makes all of the combatant’s attacks do silvered damage.
0 for false, anything else for true.

	
resistances

	optional - A list of damage types and optionally modifiers (e.g. “fire”, “nonmagical slashing”) that the
combatant should be resistant to while this effect is active.

	
immunities

	optional - A list of damage types and optionally modifiers (e.g. “fire”, “nonmagical slashing”) that the
combatant should be immune to while this effect is active.

	
vulnerabilities

	optional - A list of damage types and optionally modifiers (e.g. “fire”, “nonmagical slashing”) that the
combatant should be vulnerable to while this effect is active.

	
ignored_resistances

	optional - A list of damage types and optionally modifiers (e.g. “fire”, “nonmagical slashing”) that the
combatant should not be resistant, immune, or vulnerable to while this effect is active.

	
ac_value

	optional - A value to set the combatant’s armor class to while this effect is active.

Note

If both ac_value and ac_bonus are specified, the resulting value will be equal to
ac_value + ac_bonus.

If multiple effects specify ac_value, the highest value will be used.

	
ac_bonus

	optional - A bonus added to the combatant’s armor class while this effect is active.

	
max_hp_value

	optional - A value to set the combatant’s maximum hit points to while this effect is active.

Note

If both max_hp_value and max_hp_bonus are specified, the resulting value will be equal to
max_hp_value + max_hp_bonus.

If multiple effects specify max_hp_value, the highest value will be used.

	
max_hp_bonus

	optional - A bonus added to the combatant’s maximum hit points while this effect is active.

	
save_bonus

	optional - A bonus that this effect grants to all of the combatant’s saving throws.

	
save_adv

	optional - A list of stat names (e.g. strength) that the combatant should have advantage on for their
respective saving throws while this effect is active. Use all as a stat name to specify all stats.

	
save_dis

	optional - A list of stat names (e.g. strength) that the combatant should have disadvantage on for their
respective saving throws while this effect is active. Use all as a stat name to specify all stats.

	
check_bonus

	optional - A bonus that this effect grants to all of the combatant’s skill checks.

	
check_adv

	optional - A list of skill names (e.g. sleightOfHand, strength) that the combatant should have
advantage on for ability checks for while this effect is active. If a base ability is given, the advantage
will apply to all skills based on that ability (e.g. strength gives advantage on athletics checks).
Use all as a stat name to specify all skills.

	
check_dis

	optional - A list of skill names (e.g. sleightOfHand, strength) that the combatant should have
disadvantage on for ability checks for while this effect is active. If a base ability is given, the disadvantage
will apply to all skills based on that ability (e.g. strength gives disadvantage on athletics checks).
Use all as a stat name to specify all skills.

	
dc_bonus

	optional - A bonus added to the all of the combatant’s save DCs while this effect is active.

AttackInteraction

{
 attack: Attack;
 defaultDC?: IntExpression;
 defaultAttackBonus?: IntExpression;
 defaultCastingMod?: IntExpression;
}

Used to specify an attack granted by an initiative effect: some automation that appears in the combatant’s
!action list and can be run with a command.

	
class AttackInteraction

	
	
attack

	The Attack model is any valid individual entity as exported by the attack editor on the Avrae Dashboard.
See Custom Attack Structure.

	
defaultDC

	optional - The default saving throw DC to use when running the automation. If not provided, defaults to the
targeted combatant’s default spellcasting DC (or any DC specified in the automation). Use this if the effect’s
DC depends on the original caster’s DC, rather than the target’s DC.

	
defaultAttackBonus

	optional - The default attack bonus to use when running the automation. If not provided, defaults to the
targeted combatant’s default attack bonus (or any attack bonus specified in the automation). Use this if the
effect’s attack bonus depends on the original caster’s attack bonus, rather than the target’s attack bonus.

	
defaultCastingMod

	optional - The default spellcasting modifier to use when running the automation. If not provided, defaults to
the targeted combatant’s default spellcasting modifier. Use this if the effect’s spellcasting modifier depends
on the original caster’s spellcasting modifier, rather than the target’s spellcasting modifier.

ButtonInteraction

{
 automation: Effect[];
 label: AnnotatedString;
 verb?: AnnotatedString;
 style?: IntExpression;
 defaultDC?: IntExpression;
 defaultAttackBonus?: IntExpression;
 defaultCastingMod?: IntExpression;
}

Used to specify a button that will appear on the targeted combatant’s turn and execute some automation when pressed.

Note

Any initiative effects applying an offensive effect to the caster will not be considered when a ButtonInteraction
is run, to prevent scenarios where an effect granting a damage bonus to the caster increases the damage done by
a damage over time effect and other similar scenarios.

You may think of this as a ButtonInteraction’s caster being a temporary actor without any active initiative effects.

	
class ButtonInteraction

	
	
automation

	The automation to run when this button is pressed.

	
label

	The label displayed on the button.

	
verb

	optional, default “uses {label}” - The verb to use for the displayed output when the button is pressed (e.g.
“is on fire” would display “NAME is on fire!”).

	
style

	optional, default blurple - The color of the button (1 = blurple, 2 = grey, 3 = green, 4 = red).

	
defaultDC

	optional - The default saving throw DC to use when running the automation. If not provided, defaults to the
targeted combatant’s default spellcasting DC (or any DC specified in the automation). Use this if the effect’s
DC depends on the original caster’s DC, rather than the target’s DC.

	
defaultAttackBonus

	optional - The default attack bonus to use when running the automation. If not provided, defaults to the
targeted combatant’s default attack bonus (or any attack bonus specified in the automation). Use this if the
effect’s attack bonus depends on the original caster’s attack bonus, rather than the target’s attack bonus.

	
defaultCastingMod

	optional - The default spellcasting modifier to use when running the automation. If not provided, defaults to
the targeted combatant’s default spellcasting modifier. Use this if the effect’s spellcasting modifier depends
on the original caster’s spellcasting modifier, rather than the target’s spellcasting modifier.

Remove IEffect

New in version 4.0.0.

{
 type: "remove_ieffect";
 removeParent?: "always" | "if_no_children";
}

Removes the initiative effect that triggered this automation.
Only works when run in execution triggered by an initiative effect, such as a ButtonInteraction
(see ButtonInteraction).

	
class RemoveIEffect

	
	
removeParent

	optional, default null - If the removed effect has a parent, whether to remove the parent.

	null (default) - Do not remove the parent effect.

	"always" - If the removed effect has a parent, remove it too.

	"if_no_children" - If the removed effect has a parent and its only remaining child was the removed effect,
remove it too.

Variables

No variables are exposed.

Roll

{
 type: "roll";
 dice: AnnotatedString;
 name: string;
 higher?: {int: string};
 cantripScale?: boolean;
 hidden?: boolean;
 displayName?: string;
 fixedValue?: boolean;
}

Rolls some dice and saves the result in a variable. Displays the roll and its name in a Meta field, unless
hidden is true.

	
class Roll

	
	
dice

	An AnnotatedString detailing what dice to roll.

	
name

	The variable name to save the result as.

	
higher

	optional - How much to add to the roll when a spell is cast at a certain level.

	
cantripScale

	optional - Whether this roll should scale like a cantrip.

	
hidden

	optional - If true, won’t display the roll in the Meta field, or apply any bonuses from the -d
argument.

	
displayName

	The name to display in the Meta field. If left blank, it will use the saved name.

	
fixedValue

	optional - If true, won’t add any bonuses to damage from -d arguments or damage bonus effects.

Variables

	
	(supplied name) (RollEffectMetaVar) The result of the roll.
	
	You can use this in an AnnotatedString to retrieve the simplified result of the roll. Using this variable in an
AnnotatedString will always return a string that itself can be rolled.

	You can use this in an IntExpression to retrieve the roll total.

	You can compare this variable against a number to determine if the total of the roll equals that number.

	lastRoll (int) The integer total of the roll.

Text

{
 type: "text";
 text: AnnotatedString | AbilityReference;
 title: string
}

Outputs a short amount of text in the resulting embed.

	
class Text

	
	
text

	Either:

	An AnnotatedString (the text to display).

	An AbilityReference (see AbilityReference). Displays the ability’s description in whole.

	
title

	optional - Allows you to set the name of the field. Defaults to “Effect”

Set Variable

New in version 2.7.0.

{
 type: "variable";
 name: string;
 value: IntExpression;
 higher?: {int: IntExpression};
 onError?: IntExpression;
}

Saves the result of an IntExpression to a variable without displaying anything.

	
class SetVariable

	
	
name

	The name of the variable to save.

	
value

	The value to set the variable to.

	
higher

	optional - What to set the variable to instead when a spell is cast at a higher level.

	
onError

	optional - If provided, what to set the variable to if the normal value would throw an error.

Condition (Branch)

New in version 2.7.0.

{
 type: "condition";
 condition: IntExpression;
 onTrue: Effect[];
 onFalse: Effect[];
 errorBehaviour?: "true" | "false" | "both" | "neither" | "raise";
}

Run certain effects if a certain condition is met, or other effects otherwise. AKA “branch” or “if-else”.

	
class Condition

	
	
condition

	The condition to check.

	
onTrue

	The effects to run if condition is True or any non-zero value.

	
onFalse

	The effects to run if condition is False or 0.

	
errorBehaviour

	How to behave if the condition raises an error:

	"true": Run the onTrue effects.

	"false": Run the onFalse effects. (default)

	"both": Run both the onTrue and onFalse effects, in that order.

	"neither": Skip this effect.

	"raise": Raise the error and halt execution.

Use Counter

New in version 2.10.0.

{
 type: "counter";
 counter: string | SpellSlotReference | AbilityReference;
 amount: IntExpression;
 allowOverflow?: boolean;
 errorBehaviour?: "warn" | "raise" | "ignore";
 fixedValue?: boolean;
}

Uses a number of charges of the given counter, and displays the remaining amount and delta.

Note

Regardless of the current target, this effect will always use the caster’s counter/spell slots!

	
class UseCounter

	
	
counter

	The name of the counter to use (case-sensitive, full match only), or a reference to a spell slot
(see SpellSlotReference).

	
amount

	The number of charges to use. If negative, will add charges instead of using them.

	
allowOverflow

	optional, default False - If False, attempting to overflow/underflow a counter (i.e. use more charges than
available or add charges exceeding max) will error instead of clipping to bounds.

	
errorBehaviour

	optional, default “warn” - How to behave if modifying the counter raises an error:

	"warn": Automation will continue to run, and any errors will appear in the output. (default)

	"raise": Raise the error and halt execution.

	"ignore": All errors are silently consumed.

Some, but not all, possible error conditions are:

	The target does not have counters (e.g. they are a monster)

	The counter does not exist

	allowOverflow is false and the new value is out of bounds

	
fixedValue

	optional - If true, won’t take into account -amt arguments.

Variables

	lastCounterName (str) The name of the last used counter. If it was a spell slot, the level of the slot (safe to cast to int, i.e. int(lastCounterName)). (None on error).

	lastCounterRemaining (int) The remaining charges of the last used counter (0 on error).

	lastCounterUsedAmount (int) The amount of the counter successfully used.

	lastCounterRequestedAmount (int) The amount of the counter requested to be used (i.e. the amount
specified by automation or requested by -amt, regardless of the presence of the -i arg).

SpellSlotReference

{
 slot: number | IntExpression;
}

	
class SpellSlotReference

	
	
slot

	The level of the spell slot to reference ([1..9]).

AbilityReference

{
 id: number;
 typeId: number;
}

In most cases, an AbilityReference should not be constructed manually; use the Automation editor to select an
ability instead. A list of valid abilities can be retrieved from the API at /gamedata/limiteduse.

Note

The Automation Engine will make a best effort at discovering the appropriate counter to use for the
given ability - in most cases this won’t affect the chosen counter, but in some cases, it may
lead to some unexpected behaviour. Some examples of counter discovery include:

	Choosing Channel Divinity (Paladin) may discover a counter granted by the Cleric’s Channel Divinity feature

	Choosing Breath Weapon (Gold) may discover a counter for a breath weapon of a different color

	Choosing Sorcery Points (Sorcerer) may discover a counter granted by the Metamagic Adept feat

	
class AbilityReference

	
	
id

	The ID of the ability referenced.

	
typeId

	The DDB entity type ID of the ability referenced.

Cast Spell

New in version 2.11.0.

{
 type: "spell";
 id: int;
 level?: int;
 dc?: IntExpression;
 attackBonus?: IntExpression;
 castingMod?: IntExpression;
 parent?: string;
}

Executes the given spell’s automation as if it were immediately cast. Does not use a spell
slot to cast the spell. Can only be used at the root of automation. Cannot be used inside a spell’s automation.

This is usually used in features that cast spells using alternate resources (i.e. Use Counter, Cast Spell).

	
class CastSpell

	
	
id

	The DDB entity id of the spell to cast. Use the Automation Editor to select a spell or the
/gamedata/spells API endpoint to retrieve a list of valid spell IDs.

	
level

	optional - The (slot) level to cast the spell at.

	
dc

	optional - The saving throw DC to use when casting the spell. If not provided, defaults to the caster’s
default spellcasting DC (or any DC specified in the spell automation).

	
attackBonus

	optional - The spell attack bonus to use when casting the spell. If not provided, defaults to the caster’s
default spell attack bonus (or any attack bonus specified in the spell automation).

	
castingMod

	optional - The spellcasting modifier to use when casting the spell. If not provided, defaults to the caster’s
default spellcasting modifier.

	
parent

	optional, default None - If supplied, sets the spells created effect’s parent to the given effect. This must be the
name of an existing IEffectMetaVar. Useful for handling concentration.

Variables

No variables are exposed.

Ability Check

New in version 4.0.0.

{
 type: "check";
 ability: string | string[];
 contestAbility?: string | string[];
 dc?: IntExpression;
 success?: Effect[];
 fail?: Effect[];
 contestTie?: "fail" | "success" | "neither";
 adv?: -1 | 0 | 1;
}

An Ability Check effect forces a targeted creature to make an ability check, optionally as a contest against the caster.
It must be inside a Target effect.

	
class Check

	
	
ability

	The ability to make a check for. Must be one of or a list of the following:

"acrobatics"
"animalHandling"
"arcana"
"athletics"
"deception"
"history"
"initiative"
"insight"
"intimidation"
"investigation"
"medicine"
"nature"
"perception"
"performance"
"persuasion"
"religion"
"sleightOfHand"
"stealth"
"survival"
"strength"
"dexterity"
"constitution"
"intelligence"
"wisdom"
"charisma"

If multiple skills are specified, uses the highest modifier of all the specified skills.

	
contestAbility

	optional - Which ability of the caster’s to make a contest against.
Must be one of or a list of the valid skills listed above.
If multiple skills are specified, uses the highest modifier of all the specified skills.

Mutually exclusive with dc.

	
dc

	optional - An IntExpression that specifies the check’s DC. If neither dc nor contestAbility is given,
the check will not run either the fail or success nodes.

Mutually exclusive with contestAbility.

	
success

	optional - A list of effects to execute on a successful check or if the target wins the contest.
Requires the contestAbility or dc attribute to be set.

	
fail

	optional - A list of effects to execute on a failed check or if the target loses the contest.
Requires the contestAbility or dc attribute to be set.

	
contestTie

	optional, default success - Which list of effects to run if the ability contest results in a tie.

	
adv

	optional, default 0 - Whether the check should have advantage by default (-1 = disadvantage,
1 = advantage, 0 = no advantage).

Variables

	lastCheckRollTotal (int) The result of the last check roll (0 if no roll was made).

	lastCheckNaturalRoll (int) The natural roll of the last check roll (e.g. 10 in
1d20 (10) + 5 = 15; 0 if no roll was made).

	lastCheckAbility (str) The title-case full name of the rolled skill (e.g. "Animal Handling",
"Arcana").

	lastCheckDidPass (bool [https://docs.python.org/3/library/functions.html#bool] or None) If a DC was given, whether the target succeeded the check.
If a contest was specified, whether the target won the contest.
None if no or contest given.

	lastCheckDC (int or None) If a DC was given, the DC of the last save roll. None if no DC given.

Contest Variables

	lastContestRollTotal (int or None) The result of the caster’s contest roll; None if no contest
was made.

	lastContestNaturalRoll (int or None) The natural roll of the caster’s contest roll (e.g. 10 in
1d20 (10) + 5 = 15; None if no contest was made).

	lastContestAbility (str or None) The title-case full name of the skill the caster rolled
(e.g. "Animal Handling", "Arcana"). None if no contest was made.

	lastContestDidTie (bool [https://docs.python.org/3/library/functions.html#bool]) Whether a ability contest resulted in a tie.

AnnotatedString

An AnnotatedString is a string that can access saved variables.
To access a variable, surround the name in brackets (e.g. {damage}).
Available variables include:

	implicit variables from Effects (see relevant effect for a list of variables it provides)

	any defined in a Roll or Set Variable effect

	all variables from the Cvar Table

This will replace the bracketed portion with the value of the meta variable.

To perform math inside an AnnotatedString, surround the formula with two curly braces
(e.g. {{floor(dexterityMod+spell)}}).

IntExpression

An IntExpression is similar to an AnnotatedString in its ability to use variables and functions. However, it has the
following differences:

	Curly braces around the expression are not required

	An IntExpression can only contain one expression

	The result of an IntExpression must be an integer.

These are valid IntExpressions:

	8 + proficiencyBonus + dexterityMod

	12

	floor(level / 2)

These are not valid IntExpressions:

	1d8

	DC {8 + proficiencyBonus + dexterityMod}

Examples

Attack

A normal attack:

[
 {
 "type": "target",
 "target": "each",
 "effects": [
 {
 "type": "attack",
 "attackBonus": "dexterityMod + proficiencyBonus",
 "hit": [
 {
 "type": "damage",
 "damage": "1d10[piercing]"
 }
],
 "miss": []
 }
]
 }
]

Save

A spell that requires a Dexterity save for half damage:

[
 {
 "type": "roll",
 "dice": "8d6[fire]",
 "name": "damage",
 "higher": {
 "4": "1d6[fire]",
 "5": "2d6[fire]",
 "6": "3d6[fire]",
 "7": "4d6[fire]",
 "8": "5d6[fire]",
 "9": "6d6[fire]"
 }
 },
 {
 "type": "target",
 "target": "all",
 "effects": [
 {
 "type": "save",
 "stat": "dex",
 "fail": [
 {
 "type": "damage",
 "damage": "{damage}"
 }
],
 "success": [
 {
 "type": "damage",
 "damage": "({damage})/2"
 }
]
 }
]
 },
 {
 "type": "text",
 "text": "Each creature in a 20-foot radius must make a Dexterity saving throw. A target takes 8d6 fire damage on a failed save, or half as much damage on a successful one."
 }
]

Attack & Save

An attack from a poisoned blade:

[
 {
 "type": "target",
 "target": "each",
 "effects": [
 {
 "type": "attack",
 "attackBonus": "strengthMod + proficiencyBonus",
 "hit": [
 {
 "type": "damage",
 "damage": "1d10[piercing]"
 },
 {
 "type": "save",
 "stat": "con",
 "dc": "12",
 "fail": [
 {
 "type": "damage",
 "damage": "1d6[poison]"
 }
],
 "success": []
 }
],
 "miss": []
 }
]
 },
 {
 "type": "text",
 "text": "On a hit, a target must make a DC 12 Constitution saving throw or take 1d6 poison damage."
 }
]

Draining Attack

An attack that heals the caster for half the amount of damage dealt:

[
 {
 "type": "variable",
 "name": "lastDamage",
 "value": "0"
 },
 {
 "type": "target",
 "target": "each",
 "effects": [
 {
 "type": "attack",
 "attackBonus": "charismaMod + proficiencyBonus",
 "hit": [
 {
 "type": "damage",
 "damage": "3d6[necrotic]"
 }
],
 "miss": []
 }
]
 },
 {
 "type": "target",
 "target": "self",
 "effects": [
 {
 "type": "damage",
 "damage": "-{lastDamage}/2 [heal]"
 }
]
 },
 {
 "type": "text",
 "text": "On a hit, the target takes 3d6 necrotic damage, and you regain hit points equal to half the amount of necrotic damage dealt."
 }
]

Target Health-Based

A spell that does different amounts of damage based on whether or not the target is damaged:

[
 {
 "type": "target",
 "target": "each",
 "effects": [
 {
 "type": "save",
 "stat": "wis",
 "fail": [
 {
 "type": "condition",
 "condition": "target.hp < target.max_hp",
 "onTrue": [
 {
 "type": "damage",
 "damage": "1d8 [necrotic]"
 }
],
 "onFalse": [
 {
 "type": "damage",
 "damage": "1d4 [necrotic]"
 }
],
 "errorBehaviour": "both"
 }
],
 "success": []
 }
]
 },
 {
 "type": "text",
 "text": "The target must succeed on a Wisdom saving throw or take 1d4 necrotic damage. If the target is missing any of its hit points, it instead takes 1d8 necrotic damage."
 }
]

Area Vampiric Drain

An effect that heals the caster for the total damage dealt to all targets:

[
 {
 "type": "variable",
 "name": "totalDamage",
 "value": "0"
 },
 {
 "type": "target",
 "target": "each",
 "effects": [
 {
 "type": "damage",
 "damage": "1d6 [necrotic]"
 },
 {
 "type": "variable",
 "name": "totalDamage",
 "value": "totalDamage + lastDamage"
 }
]
 },
 {
 "type": "target",
 "target": "self",
 "effects": [
 {
 "type": "damage",
 "damage": "-{totalDamage} [heal]"
 }
]
 },
 {
 "type": "text",
 "text": "Each creature within 10 feet of you takes 1d6 necrotic damage. You regain hit points equal to the sum of the necrotic damage dealt."
 }
]

Damage Over Time Effect

An effect that lights the target on fire, adding two buttons on their turn to take the fire damage and douse themselves.

[
 {
 "type": "target",
 "target": "each",
 "effects": [
 {
 "type": "ieffect2",
 "name": "Burning",
 "buttons": [
 {
 "label": "Burning",
 "verb": "is on fire",
 "style": "4",
 "automation": [
 {
 "type": "target",
 "target": "self",
 "effects": [
 {
 "type": "damage",
 "damage": "1d6 [fire]"
 }
]
 },
 {
 "type": "text",
 "text": "At the start of each of the target's turns, the target takes 1d6 fire damage."
 }
]
 },
 {
 "label": "Douse",
 "verb": "puts themself out",
 "automation": [
 {
 "type": "remove_ieffect"
 },
 {
 "type": "text",
 "text": "The target can use an action to put themselves out."
 }
]
 }
]
 }
]
 }
]

Custom Attack Structure

{
 _v: 2;
 name: string;
 automation: Effect[];
 verb?: string;
 proper?: boolean;
 criton?: number;
 phrase?: string;
 thumb?: string;
 extra_crit_damage?: string;
 activation_type?: number;
}

In order to use Automation, it needs to be contained within a custom attack or spell. We recommend building these on
the Avrae Dashboard [https://avrae.io/dashboard/characters], but if you wish to write a custom attack by hand, the
structure is documented here.

Hand-written custom attacks may be written in JSON or YAML and imported using the !a import command.

	
class AttackModel

	
	
_v

	This must always be set to 2.

	
name

	The name of the attack.

	
automation

	The automation of the attack: a list of effects (documented above).

	
verb

	optional, default “attacks with” - The verb to use in attack title displays.

	
proper

	optional, default false - Whether or not the attack’s name is a proper noun. Affects title displays.

	
criton

	optional - The natural roll (or higher) this attack should crit on. For example, criton: 18 would cause
this attack to crit on a natural roll of 18, 19, or 20.

	
phrase

	optional - A short snippet of flavor text to display when this attack is used.

	
thumb

	optional - A URL to an image to display in a thumbnail when this attack is used.

	
extra_crit_damage

	optional - How much extra damage to deal when this attack crits, in addition to normal crit rules such as
doubling damage dice. For example, if this attack normally deals 1d6 damage with extra_crit_damage: "1d8",
it will deal 2d6 + 1d8 damage on a crit.

	
activation_type

	optional - What action type to display this attack as in an action list (such as !a list).

ACTION = 1
NO_ACTION = 2
BONUS_ACTION = 3
REACTION = 4
MINUTE = 6
HOUR = 7
SPECIAL = 8
LEGENDARY = 9
MYTHIC = 10
LAIR = 11

Specifying Class Feature DC Bonuses

New in version 4.1.0.

Many official class automations let you specify a DC bonus that is added to the class feature’s DC. For example, to add a bonus to all of your Fighter’s Battlemaster Maneuvers, you can set a FighterDCBonus cvar and add it to the DC of all of your maneuvers.

For more details on using this, see Specifying Class Feature DC Bonuses

To account for this in your automations, use the Set Variable node, with a value of XDCBonus and an onError of 0.

{
 "type": "variable",
 "name": "BloodHunterDCBonus",
 "value": "BloodHunterDCBonus",
 "onError": "0"
}

Then, when you set your save DC’s in that automation, add +XDCBonus to the DC total.

{
 "type": "save",
 "stat": "str",
 "dc": "8+proficiencyBonus+intelligenceMod+BloodHunterDCBonus",
 "fail": [],
 "success": []
}

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | V
 | W

_

 	
 	__str__() (SimpleRollResult method)

 	
 	_v (AttackModel attribute)

A

 	
 	ability (Check attribute)

 	AbilityReference (built-in class)

 	
 abs()

 	built-in function

 	ac (AliasCharacter property)

 	(AliasStatBlock property)

 	(SimpleCombatant property)

 	ac_bonus (PassiveEffects attribute)

 	ac_value (PassiveEffects attribute)

 	acrobatics (AliasSkills attribute)

 	actions (AliasCharacter property)

 	activation_type (AliasAction property)

 	(AliasAttack property)

 	(AttackModel attribute)

 	activation_type_name (AliasAction property)

 	add_context() (ParsedArguments method)

 	add_effect() (SimpleCombatant method)

 	adv

 	(AliasSkill property)

 	(Check attribute)

 	(Save attribute)

 	adv() (ParsedArguments method)

 	alias (AliasContext property)

 	AliasAction (class in aliasing.api.character)

 	AliasAttack (class in aliasing.api.statblock)

 	AliasAttackList (class in aliasing.api.statblock)

 	AliasAuthor (class in aliasing.api.context)

 	AliasBaseStats (class in aliasing.api.statblock)

 	AliasCategory (class in aliasing.api.context)

 	AliasChannel (class in aliasing.api.context)

 	AliasCharacter (class in aliasing.api.character)

 	AliasCoinpurse (class in aliasing.api.character)

 	AliasContext (class in aliasing.api.context)

 	AliasCustomCounter (class in aliasing.api.character)

 	AliasDeathSaves (class in aliasing.api.character)

 	AliasGuild (class in aliasing.api.context)

 	AliasLevels (class in aliasing.api.statblock)

 	
 	AliasResistances (class in aliasing.api.statblock)

 	AliasSaves (class in aliasing.api.statblock)

 	AliasSkill (class in aliasing.api.statblock)

 	AliasSkills (class in aliasing.api.statblock)

 	AliasSpellbook (class in aliasing.api.statblock)

 	AliasSpellbookSpell (class in aliasing.api.statblock)

 	AliasStatBlock (class in aliasing.api.statblock)

 	
 all()

 	built-in function

 	allowOverflow (UseCounter attribute)

 	amount (TempHP attribute)

 	(UseCounter attribute)

 	animalHandling (AliasSkills attribute)

 	
 any()

 	built-in function

 	applies_to() (Resistance method)

 	applies_to_str() (Resistance method)

 	arcana (AliasSkills attribute)

 	
 argparse()

 	built-in function

 	athletics (AliasSkills attribute)

 	attack (AttackInteraction attribute)

 	attack_advantage (PassiveEffects attribute)

 	attackBonus

 	(CastSpell attribute)

 	AttackInteraction (built-in class)

 	AttackModel (built-in class)

 	attacks (AliasCharacter property)

 	(AliasStatBlock property)

 	(IEffect attribute)

 	(SimpleCombatant property)

 	(SimpleEffect attribute)

 	author (AliasContext property)

 	autoconvert() (AliasCoinpurse method)

 	automation (AttackModel attribute)

 	(built-in variable)

 	(ButtonInteraction attribute)

B

 	
 	background (AliasCharacter property)

 	bonus (AliasSkill property)

 	
 built-in function

 	abs()

 	all()

 	any()

 	argparse()

 	ceil()

 	enumerate()

 	float()

 	floor()

 	int()

 	len()

 	max()

 	min()

 	randchoice()

 	randchoices()

 	randint()

 	range()

 	round()

 	sqrt()

 	str()

 	sum()

 	time()

 	
 	ButtonInteraction (built-in class)

 	buttons (IEffect attribute)

 	(SimpleEffect attribute)

C

 	
 	can_cast() (AliasSpellbook method)

 	cantripScale (Damage attribute)

 	(Roll attribute)

 	(TempHP attribute)

 	cast() (AliasSpellbook method)

 	caster_level (AliasSpellbook property)

 	castingMod (CastSpell attribute)

 	CastSpell (built-in class)

 	category (AliasChannel property)

 	cc() (AliasCharacter method)

 	cc_exists() (AliasCharacter method)

 	cc_str() (AliasCharacter method)

 	
 ceil()

 	built-in function

 	channel (AliasContext property)

 	character() (in module aliasing.evaluators.ScriptingEvaluator)

 	charisma (AliasBaseStats property)

 	(AliasSkills attribute)

 	Check (built-in class)

 	check_adv (PassiveEffects attribute)

 	check_bonus (PassiveEffects attribute)

 	check_dis (PassiveEffects attribute)

 	children (SimpleEffect property)

 	coin_str() (AliasCoinpurse method)

 	coinpurse (AliasCharacter property)

 	combat() (in module aliasing.evaluators.ScriptingEvaluator)

 	
 	combatant_name (SimpleEffect attribute)

 	combatants (SimpleCombat attribute)

 	(SimpleGroup attribute)

 	compact_str() (AliasCoinpurse method)

 	conc (IEffect attribute)

 	(SimpleEffect attribute)

 	Condition (built-in class)

 	condition (Condition attribute)

 	consolidated() (SimpleRollResult method)

 	constitution (AliasBaseStats property)

 	(AliasSkills attribute)

 	consumables (AliasCharacter property)

 	contestAbility (Check attribute)

 	contestTie (Check attribute)

 	controller (SimpleCombatant property)

 	counter (UseCounter attribute)

 	cp (AliasCoinpurse attribute)

 	create_cc() (AliasCharacter method)

 	create_cc_nx() (AliasCharacter method)

 	creature_type (AliasCharacter property)

 	(AliasStatBlock property)

 	(SimpleCombatant property)

 	criton (AttackModel attribute)

 	csettings (AliasCharacter property)

 	ctx

 	current (SimpleCombat attribute)

 	cvars (AliasCharacter property)

D

 	
 	d20() (AliasSkill method)

 	Damage (built-in class)

 	damage (Damage attribute)

 	damage() (SimpleCombatant method)

 	damage_bonus (PassiveEffects attribute)

 	dc (AliasSpellbook property)

 	(AliasSpellbookSpell property)

 	(CastSpell attribute)

 	(Check attribute)

 	(Save attribute)

 	dc_bonus (PassiveEffects attribute)

 	death_saves (AliasCharacter property)

 	deception (AliasSkills attribute)

 	defaultAttackBonus (AttackInteraction attribute)

 	(ButtonInteraction attribute)

 	defaultCastingMod (AttackInteraction attribute)

 	(ButtonInteraction attribute)

 	defaultDC (AttackInteraction attribute)

 	(ButtonInteraction attribute)

 	delete_cc() (AliasCharacter method)

 	
 	delete_cvar() (AliasCharacter method)

 	delete_metadata() (SimpleCombat method)

 	delete_uvar() (in module aliasing.evaluators.ScriptingEvaluator)

 	desc (AliasCustomCounter property)

 	(IEffect attribute)

 	(SimpleEffect attribute)

 	description (AliasAction property)

 	(AliasCharacter property)

 	dexterity (AliasBaseStats property)

 	(AliasSkills attribute)

 	dice (Roll attribute)

 	(SimpleRollResult attribute)

 	discriminator (AliasAuthor property)

 	display_name (AliasAuthor property)

 	display_type (AliasCustomCounter property)

 	displayName (Roll attribute)

 	dtype (Resistance attribute)

 	dump_json() (in module aliasing.evaluators.ScriptingEvaluator)

 	dump_yaml() (in module aliasing.evaluators.ScriptingEvaluator)

 	duration (IEffect attribute)

 	(SimpleEffect attribute)

E

 	
 	edit_cc() (AliasCharacter method)

 	effect (built-in variable)

 	(SimpleEffect attribute)

 	effects (IEffect attribute)

 	(SimpleCombatant attribute)

 	(Target attribute)

 	end (IEffect attribute)

 	end_round() (SimpleCombat method)

 	
 	
 enumerate()

 	built-in function

 	ep (AliasCoinpurse attribute)

 	err() (in module aliasing.api.functions)

 	errorBehaviour (Condition attribute)

 	(UseCounter attribute)

 	exists() (in module aliasing.evaluators.ScriptingEvaluator)

 	extra_crit_damage (AttackModel attribute)

F

 	
 	fail (Check attribute)

 	(Save attribute)

 	fail() (AliasDeathSaves method)

 	fails (AliasDeathSaves property)

 	find() (AliasSpellbook method)

 	fixedValue (Damage attribute)

 	(Roll attribute)

 	(UseCounter attribute)

 	
 	
 float()

 	built-in function

 	
 floor()

 	built-in function

 	full (SimpleRollResult attribute)

 	full_str() (AliasCustomCounter method)

G

 	
 	get() (AliasBaseStats method)

 	(AliasLevels method)

 	(AliasSaves method)

 	(in module aliasing.evaluators.ScriptingEvaluator)

 	(ParsedArguments method)

 	get_cc() (AliasCharacter method)

 	get_cc_max() (AliasCharacter method)

 	get_cc_min() (AliasCharacter method)

 	get_coins() (AliasCoinpurse method)

 	get_combatant() (SimpleCombat method)

 	(SimpleGroup method)

 	get_cvar() (AliasCharacter method)

 	get_effect() (SimpleCombatant method)

 	
 	get_group() (SimpleCombat method)

 	get_gvar() (in module aliasing.evaluators.ScriptingEvaluator)

 	get_max_slots() (AliasSpellbook method)

 	get_metadata() (SimpleCombat method)

 	get_mod() (AliasBaseStats method)

 	get_slots() (AliasSpellbook method)

 	get_svar() (in module aliasing.evaluators.ScriptingEvaluator)

 	get_uvar() (in module aliasing.evaluators.ScriptingEvaluator)

 	get_uvars() (in module aliasing.evaluators.ScriptingEvaluator)

 	gp (AliasCoinpurse attribute)

 	group (SimpleCombatant property)

 	groups (SimpleCombat attribute)

 	guild (AliasContext property)

H

 	
 	hidden (Roll attribute)

 	higher (Damage attribute)

 	(Roll attribute)

 	(SetVariable attribute)

 	(TempHP attribute)

 	history (AliasSkills attribute)

 	
 	hit

 	hp (AliasCharacter property)

 	(AliasStatBlock property)

 	(SimpleCombatant property)

 	hp_str() (AliasCharacter method)

 	(AliasStatBlock method)

 	(SimpleCombatant method)

I

 	
 	id (AbilityReference attribute)

 	(AliasAuthor property)

 	(AliasCategory property)

 	(AliasChannel property)

 	(AliasGuild property)

 	(CastSpell attribute)

 	(SimpleCombatant property)

 	(SimpleGroup property)

 	IEffect (built-in class)

 	ignore() (ParsedArguments method)

 	ignored_resistances (PassiveEffects attribute)

 	image (AliasCharacter property)

 	immune (AliasResistances property)

 	immunities (PassiveEffects attribute)

 	init (SimpleCombatant attribute)

 	(SimpleGroup attribute)

 	
 	initiative (AliasSkills attribute)

 	initmod (SimpleCombatant attribute)

 	insight (AliasSkills attribute)

 	
 int()

 	built-in function

 	intelligence (AliasBaseStats property)

 	(AliasSkills attribute)

 	intimidation (AliasSkills attribute)

 	investigation (AliasSkills attribute)

 	is_complex (Resistance property)

 	is_dead() (AliasDeathSaves method)

 	is_hidden (SimpleCombatant property)

 	is_immune() (AliasResistances method)

 	is_neutral() (AliasResistances method)

 	is_resistant() (AliasResistances method)

 	is_stable() (AliasDeathSaves method)

 	is_vulnerable() (AliasResistances method)

J

 	
 	join() (ParsedArguments method)

L

 	
 	label (ButtonInteraction attribute)

 	last() (ParsedArguments method)

 	len (AliasAttackList attribute)

 	
 len()

 	built-in function

 	
 	level (CastSpell attribute)

 	levels (AliasCharacter property)

 	(AliasStatBlock property)

 	(SimpleCombatant property)

 	load_json() (in module aliasing.evaluators.ScriptingEvaluator)

 	load_yaml() (in module aliasing.evaluators.ScriptingEvaluator)

M

 	
 	magical_damage (PassiveEffects attribute)

 	max (AliasCustomCounter property)

 	
 max()

 	built-in function

 	max_hp (AliasCharacter property)

 	(AliasStatBlock property)

 	(SimpleCombatant property)

 	max_hp_bonus (PassiveEffects attribute)

 	max_hp_value (PassiveEffects attribute)

 	max_pact_slots (AliasSpellbook property)

 	me (SimpleCombat attribute)

 	medicine (AliasSkills attribute)

 	
 	message_id (AliasContext property)

 	min (AliasCustomCounter property)

 	
 min()

 	built-in function

 	miss

 	mod (AliasSpellbookSpell property)

 	mod() (AliasCustomCounter method)

 	mod_cc() (AliasCharacter method)

 	modify_coins() (AliasCoinpurse method)

 	modify_hp() (AliasCharacter method)

 	(AliasStatBlock method)

 	(SimpleCombatant method)

 	monster_name (SimpleCombatant property)

N

 	
 	name (AliasAction property)

 	(AliasAttack property)

 	(AliasAuthor property)

 	(AliasCategory property)

 	(AliasChannel property)

 	(AliasCharacter property)

 	(AliasCustomCounter property)

 	(AliasGuild property)

 	(AliasSpellbookSpell property)

 	(AliasStatBlock property)

 	(AttackModel attribute)

 	(IEffect attribute)

 	(Roll attribute)

 	(SetVariable attribute)

 	(SimpleCombat attribute)

 	(SimpleCombatant property)

 	(SimpleEffect attribute)

 	(SimpleGroup property)

 	
 	nature (AliasSkills attribute)

 	neutral (AliasResistances property)

 	node (built-in variable)

 	note (SimpleCombatant property)

 	num_pact_slots (AliasSpellbook property)

O

 	
 	onError (SetVariable attribute)

 	onFalse (Condition attribute)

 	only (Resistance attribute)

 	
 	onTrue (Condition attribute)

 	overheal (Damage attribute)

 	owner (AliasCharacter property)

P

 	
 	pact_slot_level (AliasSpellbook property)

 	parent (AliasChannel property)

 	(CastSpell attribute)

 	(IEffect attribute)

 	(SimpleEffect property)

 	parse_coins() (in module aliasing.api.functions)

 	ParsedArguments (class in utils.argparser)

 	PassiveEffects (built-in class)

 	perception (AliasSkills attribute)

 	
 	performance (AliasSkills attribute)

 	persuasion (AliasSkills attribute)

 	phrase (AttackModel attribute)

 	pp (AliasCoinpurse attribute)

 	prefix (AliasContext property)

 	prepared (AliasSpellbookSpell property)

 	prof (AliasSkill property)

 	prof_bonus (AliasBaseStats property)

 	proper (AliasAttack property)

 	(AttackModel attribute)

R

 	
 	race (AliasCharacter property)

 	(SimpleCombatant property)

 	
 randchoice()

 	built-in function

 	
 randchoices()

 	built-in function

 	
 randint()

 	built-in function

 	
 range()

 	built-in function

 	raw (AliasAttack property)

 	(SimpleRollResult attribute)

 	religion (AliasSkills attribute)

 	remaining (SimpleEffect attribute)

 	remaining_casts_of() (AliasSpellbook method)

 	remove_effect() (SimpleCombatant method)

 	RemoveIEffect (built-in class)

 	removeParent (RemoveIEffect attribute)

 	reset() (AliasCustomCounter method)

 	(AliasDeathSaves method)

 	
 	reset_by (AliasCustomCounter property)

 	reset_hp() (AliasCharacter method)

 	(AliasStatBlock method)

 	(SimpleCombatant method)

 	reset_on (AliasCustomCounter property)

 	reset_pact_slots() (AliasSpellbook method)

 	reset_slots() (AliasSpellbook method)

 	reset_to (AliasCustomCounter property)

 	resist (AliasResistances property)

 	Resistance (class in cogs5e.models.sheet.resistance)

 	resistances (AliasCharacter property)

 	(AliasStatBlock property)

 	(PassiveEffects attribute)

 	(SimpleCombatant property)

 	result (SimpleRollResult attribute)

 	Roll (built-in class)

 	roll() (in module aliasing.api.functions)

 	
 round()

 	built-in function

 	round_num (SimpleCombat attribute)

S

 	
 	sab (AliasSpellbook property)

 	(AliasSpellbookSpell property)

 	Save (built-in class)

 	save() (SimpleCombatant method)

 	save_adv (PassiveEffects attribute)

 	save_as (IEffect attribute)

 	save_bonus (PassiveEffects attribute)

 	save_dis (PassiveEffects attribute)

 	saves (AliasCharacter property)

 	(AliasStatBlock property)

 	(SimpleCombatant property)

 	self_target (Target attribute)

 	set() (AliasCustomCounter method)

 	set_ac() (SimpleCombatant method)

 	set_cc() (AliasCharacter method)

 	set_coins() (AliasCoinpurse method)

 	set_context() (ParsedArguments method)

 	set_cvar() (AliasCharacter method)

 	set_cvar_nx() (AliasCharacter method)

 	set_group() (SimpleCombatant method)

 	set_hp() (AliasCharacter method)

 	(AliasStatBlock method)

 	(SimpleCombatant method)

 	set_init() (SimpleCombatant method)

 	(SimpleGroup method)

 	set_maxhp() (SimpleCombatant method)

 	set_metadata() (SimpleCombat method)

 	set_name() (SimpleCombatant method)

 	set_note() (SimpleCombatant method)

 	set_parent() (SimpleEffect method)

 	set_round() (SimpleCombat method)

 	set_slots() (AliasSpellbook method)

 	set_temp_hp() (AliasCharacter method)

 	(AliasStatBlock method)

 	(SimpleCombatant method)

 	set_uvar() (in module aliasing.evaluators.ScriptingEvaluator)

 	set_uvar_nx() (in module aliasing.evaluators.ScriptingEvaluator)

 	SetVariable (built-in class)

 	sheet_type (AliasCharacter property)

 	signature() (in module aliasing.evaluators.ScriptingEvaluator)

 	silvered_damage (PassiveEffects attribute)

 	SimpleCombat (class in aliasing.api.combat)

 	
 	SimpleCombatant (class in aliasing.api.combat)

 	SimpleEffect (class in aliasing.api.combat)

 	SimpleGroup (class in aliasing.api.combat)

 	SimpleRollResult (class in aliasing.api.functions)

 	skills (AliasCharacter property)

 	(AliasStatBlock property)

 	(SimpleCombatant property)

 	sleightOfHand (AliasSkills attribute)

 	slot (SpellSlotReference attribute)

 	slots_str() (AliasSpellbook method)

 	snippet (AliasAction property)

 	sortBy (Target attribute)

 	sp (AliasCoinpurse attribute)

 	spell_mod (AliasSpellbook property)

 	spellbook (AliasCharacter property)

 	(AliasStatBlock property)

 	(SimpleCombatant property)

 	spells (AliasSpellbook property)

 	SpellSlotReference (built-in class)

 	
 sqrt()

 	built-in function

 	stacking (IEffect attribute)

 	stat (Save attribute)

 	stats (AliasCharacter property)

 	(AliasStatBlock property)

 	(SimpleCombatant property)

 	stealth (AliasSkills attribute)

 	str (AliasAttack attribute)

 	(AliasAttackList attribute)

 	(AliasCoinpurse attribute)

 	
 str()

 	built-in function

 	strength (AliasBaseStats property)

 	(AliasSkills attribute)

 	style (ButtonInteraction attribute)

 	succeed() (AliasDeathSaves method)

 	success (Check attribute)

 	(Save attribute)

 	successes (AliasDeathSaves property)

 	
 sum()

 	built-in function

 	survival (AliasSkills attribute)

T

 	
 	Target (built-in class)

 	target (Target attribute)

 	target_self (IEffect attribute)

 	temp_hp (AliasCharacter property)

 	(AliasStatBlock property)

 	(SimpleCombatant property)

 	TempHP (built-in class)

 	Text (built-in class)

 	text (Text attribute)

 	thumb (AttackModel attribute)

 	tick_on_caster (IEffect attribute)

 	ticks_on_end (SimpleEffect attribute)

 	
 time()

 	built-in function

 	
 	title (AliasCustomCounter property)

 	(Text attribute)

 	to_hit_bonus (PassiveEffects attribute)

 	topic (AliasChannel property)

 	total (AliasCoinpurse property)

 	(SimpleRollResult attribute)

 	total_level (AliasLevels property)

 	turn_num (SimpleCombat attribute)

 	type (SimpleCombatant attribute)

 	(SimpleGroup attribute)

 	typeId (AbilityReference attribute)

 	typeof() (in module aliasing.api.functions)

U

 	
 	unless (Resistance attribute)

 	update() (ParsedArguments method)

 	update_nx() (ParsedArguments method)

 	upstream (AliasCharacter property)

 	
 	use_slot() (AliasSpellbook method)

 	UseCounter (built-in class)

 	using() (in module aliasing.evaluators.ScriptingEvaluator)

 	uvar_exists() (in module aliasing.evaluators.ScriptingEvaluator)

V

 	
 	value (AliasCustomCounter property)

 	(AliasSkill property)

 	(SetVariable attribute)

 	verb (AliasAttack property)

 	(AttackModel attribute)

 	(ButtonInteraction attribute)

 	
 	verify_signature() (in module aliasing.evaluators.ScriptingEvaluator)

 	vroll() (in module aliasing.api.functions)

 	vuln (AliasResistances property)

 	vulnerabilities (PassiveEffects attribute)

W

 	
 	wisdom (AliasBaseStats property)

 	(AliasSkills attribute)

 _static/inline_rolling_comments.png
zhu.exe
’ | attack the dragon with my greatsword [[1d20+41]], bringing its blade to bear against the beast's ruby-red scales! If it hits, it deals [[2d6+2
[slashing]]] damage.

@ zhu.exe | attack the dragon with my greatsword [[1d20+4]], bringing its blade to bear against the beast's ruby-red scales! If it hits, it deals [[2d6+2 [slashing]]] dama...

Avrae.nightly EE
‘ ...the dragon with my greatsword (1d20 (19) + 4 = 23), bringing...
.If it hits, it deals (2d6 (6, 5) + 2 [slashing] = 13) damage.

zhu.exe
’ | attack the dragon with my greatsword [[1d20+4 to hit]], bringing its blade to bear against the beast's ruby-red scales! If it hits, it deals [[2d6+2
[slashing] damage]] damage.

@ zhu.exe | attack the dragon with my greatsword [[1d20+4 to hit]], bringing its blade to bear against the beast's ruby-red scales! If it hits, it deals [2d6+2 [slashing] d...
Avrae.nightly EEB

‘ to hit: 1d20 (5) + 4= 9
damage: 2d6 (2, 1) + 2 [slashing] = 5

_static/inline_rolling_menu.png
_’ zhu.exe
J Iservsettings
e Avrae.avrae ElEED

Server Settings (Avrae Development) / Inline Rolling Settings

Inline rolling is currently set to react. I'll look for messages containing [[dice]]
and react with ‘ - click the reaction to roll!

Back

_static/file.png

_static/inline_rolling_character.png
zhu.exe
’ Padellis searches through the library [[c:inves]] to bolster his knowledge on the Outer Planes.
With a friend by his side, he gets a +2 bonus [[c:arcana +2]] to his check!

After hours of reading, he has to make a save at disadvantage [[s:con dis]] to stay awake...

@ zhu.exe Padellis searches through the library [[c:inves]] to bolster his knowledge on the Outer Planes. With a friend by his side, he gets a +2 bonus [[c:arcana +2]] t...
w) Avrae.dev [EEB
&> Padellis searches through the library (Investigation Check: 1d20 (2) + 5 = 7) to bolster...

...he gets a +2 bonus (Arcana Check: 1d20 (10) + 5 + 2 = 17) to his...

...make a save at disadvantage (Constitution Save: 2d20kl1 (9,13) + 5 = 14) to stay...

_static/minus.png

_static/plus.png

_images/inline_rolling_comments.png
zhu.exe
’ | attack the dragon with my greatsword [[1d20+41]], bringing its blade to bear against the beast's ruby-red scales! If it hits, it deals [[2d6+2
[slashing]]] damage.

@ zhu.exe | attack the dragon with my greatsword [[1d20+4]], bringing its blade to bear against the beast's ruby-red scales! If it hits, it deals [[2d6+2 [slashing]]] dama...

Avrae.nightly EE
‘ ...the dragon with my greatsword (1d20 (19) + 4 = 23), bringing...
.If it hits, it deals (2d6 (6, 5) + 2 [slashing] = 13) damage.

zhu.exe
’ | attack the dragon with my greatsword [[1d20+4 to hit]], bringing its blade to bear against the beast's ruby-red scales! If it hits, it deals [[2d6+2
[slashing] damage]] damage.

@ zhu.exe | attack the dragon with my greatsword [[1d20+4 to hit]], bringing its blade to bear against the beast's ruby-red scales! If it hits, it deals [2d6+2 [slashing] d...
Avrae.nightly EEB

‘ to hit: 1d20 (5) + 4= 9
damage: 2d6 (2, 1) + 2 [slashing] = 5

_images/inline_rolling_menu.png
_’ zhu.exe
J Iservsettings
e Avrae.avrae ElEED

Server Settings (Avrae Development) / Inline Rolling Settings

Inline rolling is currently set to react. I'll look for messages containing [[dice]]
and react with ‘ - click the reaction to roll!

Back

nav.xhtml

 Table of Contents

 		
 Welcome to Avrae’s documentation!

 		
 Getting Started

 		
 Step 1: Invite Avrae to Your Server

 		
 Optional: Setting a Prefix

 		
 Using Help

 		
 Step 2: Add a Character

 		
 D&D Beyond

 		
 Dicecloud v1

 		
 Dicecloud v2

 		
 Google Sheets

 		
 Step 3: Ready to Roll

 		
 Next Steps

 		
 DM Combat Guide

 		
 Starting Combat

 		
 Adding Monsters

 		
 Adding Other Combatants

 		
 Hiding Stats

 		
 Examples

 		
 Running Combat

 		
 Attacking

 		
 Casting a Spell

 		
 Examples

 		
 Ending A Turn

 		
 Helper Commands

 		
 HP

 		
 Attributes

 		
 Effects

 		
 Removing from Combat

 		
 Ending Combat

 		
 Player Combat Guide

 		
 Joining Combat

 		
 Your Turn

 		
 Attacking

 		
 Casting a Spell

 		
 Examples

 		
 Ending Your Turn

 		
 Helper Commands

 		
 HP

 		
 Inline Rolling

 		
 Enabling Inline Rolling

 		
 Always-On Rolling

 		
 Reaction-Based Rolling

 		
 Arguments

 		
 Comments

 		
 Character Rolls

 		
 Examples

 		
 Additional Automation Support

 		
 Specifying Class Feature DC Bonuses

 		
 Spells with Additional Support

 		
 Absorb Elements

 		
 Alter Self

 		
 Blindness/Deafness

 		
 Dragon’s Breath

 		
 Eldritch Blast

 		
 Enhance Ability

 		
 Enlarge/Reduce

 		
 Eyebite

 		
 Fire Shield

 		
 Flame Strike

 		
 Guardian of Nature

 		
 Hex

 		
 Shield

 		
 Spirit Guardians

 		
 Spirit Shroud

 		
 D&D Beyond Content Integration

 		
 How do I link my D&D Beyond and Discord accounts?

 		
 Content Access

 		
 Private Character Import

 		
 Dice Sync

 		
 Where can I go if I have issues or Questions?

 		
 Aliasing Basics

 		
 Command Types

 		
 Command Levels

 		
 Help

 		
 Aliasing Tutorials

 		
 Half-Orc Relentless Endurance Tutorial

 		
 Insult Tutorial

 		
 Aliasing API

 		
 Draconic

 		
 Syntax

 		
 Rolls

 		
 Values

 		
 Draconic Expressions

 		
 Draconic Blocks

 		
 Argument Parsing

 		
 Cvar Table

 		
 Function Reference

 		
 Python Builtins

 		
 Draconic Functions

 		
 Variable Scopes

 		
 Character Variables

 		
 User Variables

 		
 Server Variables

 		
 Global Variables

 		
 Honorable Mention: Initiative Metadata

 		
 Using Imports

 		
 Writing Modules

 		
 Catching Exceptions

 		
 See Also

 		
 Initiative Models

 		
 SimpleCombat

 		
 SimpleCombatant

 		
 SimpleGroup

 		
 SimpleEffect

 		
 Initiative Effect Args

 		
 SimpleRollResult

 		
 SimpleRollResult

 		
 ParsedArguments

 		
 ParsedArguments

 		
 Context Models

 		
 AliasContext

 		
 AliasGuild

 		
 AliasChannel

 		
 AliasCategory

 		
 AliasAuthor

 		
 AliasCharacter

 		
 AliasCharacter

 		
 AliasCustomCounter

 		
 AliasDeathSaves

 		
 AliasAction

 		
 AliasCoinpurse

 		
 StatBlock Models

 		
 AliasStatBlock

 		
 AliasBaseStats

 		
 AliasLevels

 		
 AliasAttackList

 		
 AliasAttack

 		
 AliasSkill

 		
 AliasSkills

 		
 AliasSaves

 		
 AliasResistances

 		
 Resistance

 		
 AliasSpellbook

 		
 Automation Reference

 		
 Basic Structure

 		
 automation

 		
 effect

 		
 node

 		
 Runtime Variables

 		
 Target

 		
 Target

 		
 Attack

 		
 hit

 		
 miss

 		
 attackBonus

 		
 adv

 		
 Save

 		
 Save

 		
 Damage

 		
 Damage

 		
 TempHP

 		
 TempHP

 		
 IEffect

 		
 IEffect

 		
 PassiveEffects

 		
 AttackInteraction

 		
 ButtonInteraction

 		
 Remove IEffect

 		
 RemoveIEffect

 		
 Roll

 		
 Roll

 		
 Text

 		
 Text

 		
 Set Variable

 		
 SetVariable

 		
 Condition (Branch)

 		
 Condition

 		
 Use Counter

 		
 UseCounter

 		
 SpellSlotReference

 		
 AbilityReference

 		
 Cast Spell

 		
 CastSpell

 		
 Ability Check

 		
 Check

 		
 AnnotatedString

 		
 IntExpression

 		
 Examples

 		
 Attack

 		
 Save

 		
 Attack & Save

 		
 Draining Attack

 		
 Target Health-Based

 		
 Area Vampiric Drain

 		
 Damage Over Time Effect

 		
 Custom Attack Structure

 		
 AttackModel

 		
 Specifying Class Feature DC Bonuses

_images/inline_rolling_character.png
zhu.exe
’ Padellis searches through the library [[c:inves]] to bolster his knowledge on the Outer Planes.
With a friend by his side, he gets a +2 bonus [[c:arcana +2]] to his check!

After hours of reading, he has to make a save at disadvantage [[s:con dis]] to stay awake...

@ zhu.exe Padellis searches through the library [[c:inves]] to bolster his knowledge on the Outer Planes. With a friend by his side, he gets a +2 bonus [[c:arcana +2]] t...
w) Avrae.dev [EEB
&> Padellis searches through the library (Investigation Check: 1d20 (2) + 5 = 7) to bolster...

...he gets a +2 bonus (Arcana Check: 1d20 (10) + 5 + 2 = 17) to his...

...make a save at disadvantage (Constitution Save: 2d20kl1 (9,13) + 5 = 14) to stay...

